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Abstract

Efficient exploration is a long-standing problem
in sensorimotor learning. Major advances have
been demonstrated in noise-free, non-stochastic
domains such as video games and simulation.
However, most of these formulations either get
stuck in environments with stochastic dynamics
or are too inefficient to be scalable to real robotics
setups. In this paper, we propose a formulation for
exploration inspired by the work in active learn-
ing literature. Specifically, we train an ensem-
ble of dynamics models and incentivize the agent
to explore such that the disagreement of those
ensembles is maximized. This allows the agent
to learn skills by exploring in a self-supervised
manner without any external reward. Notably,
we further leverage the disagreement objective
to optimize the agent’s policy in a differentiable
manner, without using reinforcement learning,
which results in a sample-efficient exploration.
We demonstrate the efficacy of this formulation
across a variety of benchmark environments in-
cluding stochastic-Atari, Mujoco and Unity. Fi-
nally, we implement our differentiable exploration
on a real robot which learns to interact with ob-
jects completely from scratch. Project videos and
code are at https://pathak22.github.
io/exploration-by-disagreement/.

1. Introduction
Exploration is a major bottleneck in both model-free and
model-based approaches to sensorimotor learning. In model-
based learning, exploration is a critical component in col-
lecting diverse data for training the model in the first place.
On the other hand, exploration is indispensable in model-
free reinforcement learning (RL) when rewards extrinsic
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to the agent are sparse. The common approach to explo-
ration has been to generate “intrinsic” rewards, i.e., rewards
automatically computed based on the agents model of the
environment. Existing formulations of intrinsic rewards in-
clude maximizing “visitation count” (Bellemare et al., 2016;
Lopes et al., 2012; Poupart et al., 2006) of less-frequently
visited states, “curiosity” (Oudeyer & Kaplan, 2009; Pathak
et al., 2017; Schmidhuber, 1991a) where prediction error is
used as reward signal and “diversity rewards” (Eysenbach
et al., 2018; Lehman & Stanley, 2011a;b) which incentivize
diversity in the visited states. These rewards provide con-
tinuous feedback to the agent when extrinsic rewards are
sparse, or even absent altogether.

Generating intrinsic rewards requires building some form
of a predictive model of the world. However, there is a key
challenge in learning predictive models beyond noise-free
simulated environments: how should the stochastic nature
of agent-environment interaction be handled? Stochasticity
could be caused by several sources: (1) noisy environment
observations (e.g, TV playing noise), (2) noise in the execu-
tion of agent’s action (e.g., slipping) (3) stochasticity as an
output of the agent’s action (e.g., agent flipping coin). One
straightforward solution to learn a predictive forward model
that is itself stochastic! Despite several methods to build
stochastic models in low-dimensional state space (Chua
et al., 2018; Houthooft et al., 2016), scaling it to high di-
mensional inputs (e.g., images) still remains challenging.
An alternative is to build deterministic models but encode
the input in a feature space that is invariant to stochastic-
ity. Recent work proposed building such models in inverse
model feature space (Pathak et al., 2017) which can handle
stochastic observations but fail when the agent itself is the
source of noise (e.g. TV with remote (Burda et al., 2019)).

Beyond handling stochasticity, a bigger issue in the current
intrinsic reward formulations is that of sample efficiency.
The agent performs an action and then computes the reward
based on its own prediction and environment behavior. For
instance, in curiosity (Oudeyer & Kaplan, 2009; Pathak
et al., 2017), the policy is rewarded if the prediction model
and the observed environment disagree. From an explo-
ration viewpoint, this seems like a good formulation, i.e,
rewarding actions whose effects are poorly modeled. But
this reward is a function of environment dynamics with
respect to the performed action. Since the environment
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Figure 1. Self-Supervised Exploration via Disagreement: At time step t, the agent in the state xt interacts with the environment by
taking action at sampled from the current policy π and ends up in the state xt+1. The ensemble of forward models {f1, f2, ..., fn} takes
this current state xt and the executed action at as input to predict the next state estimates {x̂1t+1, x̂

2
t+2, ..., x̂

n
t+1}. The variance over the

ensemble of network output is used as intrinsic reward rit to train the policy π. In practice, we encode the state x into an embedding space
φ(x) for all the prediction purposes.

dynamics is unknown, it is treated as black-box and the
policy’s gradients have to be estimated using high-variance
estimators like REINFORCE (Williams, 1992) which are
extremely sample-inefficient in practice.

We address both the challenges by proposing an alternative
formulation for exploration taking inspiration from active
learning. The goal of active learning is to selectively pick
samples to label such that the classifier is maximally im-
proved. However, unlike current intrinsic motivation for-
mulations where an agent is rewarded by comparing the
prediction to the ground-truth, the importance of a sample
is not computed by looking at the ground-truth label but
rather by looking at the state of the classifier itself. For
instance, a popular approach is to label the most uncer-
tain samples by looking at the confidence of the classifier.
However, since most of the high-capacity deep neural net-
works tend to overfit, confidence is not a good measure of
uncertainty. Hence, taking an analogy from the Query-by-
Committee algorithm (Seung et al., 1992), we propose a
simple disagreement-based approach: we train an ensem-
ble of forward dynamics models and incentivize the agent
to explore the action space where there is maximum dis-
agreement or variance among the predictions of models
of this ensemble. Taking actions to maximize the model-
disagreement allows the agent to explore in a completely
self-supervised manner without relying on any external re-
wards. We show that this approach does not get stuck in
stochastic-dynamics scenarios because all the models in
the ensemble converge to mean, eventually reducing the
variance of the ensemble.

Furthermore, we show that our new objective is a differen-
tiable function allowing us to perform policy optimization
via direct likelihood maximization – much like supervised
learning instead of reinforcement learning. This leads to a

sample efficient exploration policy allowing us to deploy
it in a real robotic object manipulation setup with 7-DOF
Sawyer arm. We demonstrate the efficacy of our approach
on a variety of standard environments including stochas-
tic Atari games (Machado et al., 2017), MNIST, Mujoco,
Unity (Juliani et al., 2018) and a real robot.

2. Exploration via Disagreement
Consider an agent interacting with the environment E . At
time t, it receives the observation xt and then takes an action
predicted by its policy, i.e., at ∼ π(xt; θP ). Upon executing
the action, it receives, in return, the next observation xt+1

which is ‘generated’ by the environment. Our goal is to
build an agent that chooses its action in order to maximally
explore the state space of the environment in an efficient
manner. There are two main components to our agent: an
intrinsic forward prediction model that captures the agent’s
current knowledge of the states explored so far, and policy
to output actions. As our agent explores the environment,
we learn the agent’s forward prediction model to predict the
consequences of its own actions. The prediction uncertainty
of this model is used to incentivize the policy to visit states
with maximum uncertainty.

Both measuring and maximizing model uncertainty are chal-
lenging to execute with high dimensional raw sensory input
(e.g. images). More importantly, the agent should learn
to deal with ‘stochasticity’ in its interaction with the en-
vironment caused by either noisy actuation of the agent’s
motors, or the observations could be inherently stochastic.
A deterministic prediction model will always end up with a
non-zero prediction error allowing the agent to get stuck in
the local minima of exploration.

Similar behavior would occur if the task at hand is too
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difficult to learn. Consider a robotic arm manipulating a
keybunch. Predicting the change in pose and position of
each key in the keybunch is extremely difficult. Although
the behavior is not inherently stochastic, our agent could eas-
ily get stuck in playing with the same keybunch and not try
other actions or even other objects. Existing formulations
of curiosity reward or novelty-seeking count-based methods
would also suffer in such scenarios. Learning probabilistic
predictive models to measure uncertainty (Houthooft et al.,
2016), or measuring learnability by capturing the change
in prediction error (Oudeyer & Kaplan, 2009; Schmidhu-
ber, 1991a) have been proposed as solutions, but have been
demonstrated in low-dimensional state space inputs and are
difficult to scale to high dimensional image inputs.

2.1. Disagreement as Intrinsic Reward

Instead of learning a single dynamics model, we propose
an alternate exploration formulation based on ensemble of
models as inspired by the classical active learning litera-
ture (Seung et al., 1992). The goal of active learning is to
find the optimal training examples to label such that the ac-
curacy is maximized at minimum labeling cost. While active
learning minimizes optimal cost with an analytic policy, the
goal of an exploration-driven agent is to learn a policy that
allows it to best navigate the environment space. Although
the two might look different at the surface, we argue that
active learning objectives could inspire powerful intrinsic
reward formulations. In this work, we leverage the idea of
model-variance maximization to propose exploration formu-
lation. Leveraging model variance to investigate a system
is also a well-studied mechanism in optimal experimental
design literature (Boyd & Vandenberghe, 2004) in statistics.

As our agent interacts with the environment, it collects tra-
jectory of the form {xt, at, xt+1}. After each rollout, the
collected transitions are used to train an ensemble of forward
prediction models {fθ1 , fθ2 . . . , fθk} of the environment.
Each of the model is trained to map a given tuple of current
observation xt and the action at to the resulting state xt+1.
These models are trained using straightforward maximum
likelihood estimation that minimizes the prediction error,
i.e, ‖f(xt, at; θ)− xt+1‖2. To maintain the diversity across
the individual models, we initialize each model’s parame-
ters differently and train each of them on a subset of data
randomly sampled with replacement (bootstrap).

Each model in our ensemble is trained to predict the ground
truth next state. Hence, the parts of the state space which
have been well explored by the agent will have gathered
enough data to train all models, resulting in an agreement
between the models. Since the models are learned (and
not tabular), this property should generalize to unseen but
similar parts of the state-space. However, the areas which
are novel and unexplored would still have high prediction

error for all models as none of them are yet trained on such
examples, resulting in disagreement on the next state pre-
diction. Therefore, we use this disagreement as an intrinsic
reward to guide the policy. Concretely, the intrinsic reward
rit is defined as the variance across the output of different
models in the ensemble:

rit , Eθ
[
‖f(xt, at; θ)− Eθ[f(xt, at; θ)]‖22

]
(1)

Note that the expression on the right does not depend on
the next state xt+1 — a property which will exploit in Sec-
tion 2.3 to propose efficient policy optimization.

Given the agent’s rollout sequence and the intrinsic reward
rit at each timestep t, the policy is trained to maximize the
sum of expected reward, i.e., maxθP Eπ(xt;θP )

[∑
t γ

trit
]

discounted by a factor γ. Note that the agent is self-
supervised and does not need any extrinsic reward to ex-
plore. The agent policy and the forward model ensemble
are jointly trained in an online manner on the data collected
by the agent during exploration. This objective can be max-
imized by any policy optimization technique, e.g., we use
proximal policy optimization (PPO) (Schulman et al., 2017)
unless specified otherwise.

2.2. Exploration in Stochastic Environments

Consider a scenario where the next state xt+1 is stochas-
tic with respect to the current state xt and action at. The
source of stochasticity could be noisy actuation, difficulty
or inherent randomness. Given enough samples, a dynamic
prediction model should learn to predict the mean of the
stochastic samples. Hence, the variance of the outputs in
ensemble will drop preventing the agent from getting stuck
in stochastic local-minima of exploration. Note this is un-
like prediction error based objectives (Pathak et al., 2017;
Schmidhuber, 1991b) which will settle down to a mean
value after large enough samples. Since, the mean is differ-
ent from the individual ground-truth stochastic states, the
prediction error remains high making the agent forever cu-
rious about the stochastic behavior. We empirically verify
this intuition by comparing prediction-error to disagreement
across several environments in Section 4.2.

2.3. Differentiable Exploration for Policy Optimization

One commonality between different exploration meth-
ods (Bellemare et al., 2016; Houthooft et al., 2016; Pathak
et al., 2017), is that the prediction model is usually learned
in a supervised manner and the agent’s policy is trained us-
ing reinforcement learning either in on-policy or off-policy
manner. Despite several formulations over the years, the
policy optimization procedure to maximize these intrinsic
rewards has more or less remained the same – i.e. – treat-
ing the intrinsic reward as a “black-box” even though it is
generated by the agent itself.
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Let’s consider an example to understand the reason behind
the status quo. Consider a robotic-arm agent trying to push
multiple objects kept on the table in front of it by look-
ing at the image from an overhead camera. Suppose the
arm pushes an object such that it collides with another one
on the table. The resulting image observation will be the
outcome of complex real-world interaction, the actual dy-
namics of which is not known to the agent. Note that this
resulting image observation is a function of the agent’s
action (i.e., push in this case). Most commonly, the in-
trinsic reward ri(xt, at, xt+1) is function of the next state
(which is a function of the agent’s action), e.g., information
gain (Houthooft et al., 2016), prediction error (Pathak et al.,
2017) etc. This dependency on the unknown environment
dynamics absolves the policy optimization of analytical
reward gradients with respect to the action. Hence, the stan-
dard way is to optimize the policy to maximize the sequence
of intrinsic rewards using reinforcement learning, and not
make any use of the structure present in the design of rit.

We formulate our proposed intrinsic reward as a differen-
tiable function so as to perform policy optimization using
likelihood maximization – much like supervised learning
instead of reinforcement. If possible, this would allow the
agent to make use of the structure in rit explicitly, i.e., the
intrinsic reward from the model could very efficiently in-
form the agent to change its action space in the direction
where forward prediction loss is high, instead of providing
a scalar feedback as in case of reinforcement learning. Ex-
plicit reward (cost) functions are one of the key reasons for
success stories in optimal-control based robotics (Deisen-
roth & Rasmussen, 2011b; Gal et al., 2016), but they don’t
scale to high-dimensional state space such as images and
rely on having access to a good model of the environment.

We first discuss the one step case and then provide the
general setup. Note that our intrinsic reward formulation,
shown in Equation (1), does not depend on the environment
interaction at all, i.e., no dependency on xt+1. It is purely
a mental simulation of the ensemble of models based on
the current state and the agent’s prediction action. Hence,
instead of maximizing the intrinsic reward in expectation
via PPO (RL), we can optimize for policy parameters θP
using direct gradients by treating rit as a differentiable loss
function. The objective for a one-step reward horizon is:

min
θ1,...,θk

(1/k)

k∑
i=1

‖fθi(xt, at)− xt+1‖2 (2)

max
θP

(1/k)

k∑
i=1

[
‖fθi(xt, at)− (1/k)

k∑
j=1

fθj (xt, at)‖22
]

s.t. at = π(xt; θP )

This is optimized in an alternating fashion where the forward
predictor is optimized keeping the policy parameters frozen

and vice-versa. Note that both policy and forward models
are trained via maximum likelihood in a supervised manner,
and hence, efficient in practice.

Generalization to multi-step reward horizon To opti-
mize policy for maximizing a discounted sum of sequence
of future intrinsic rewards rit in a differentiable manner,
the forward model would have to make predictions span-
ning over multiple time-steps. The policy objective in
Equation (2) can be generalized to the multi-step hori-
zon setup by recursively applying the forward predictor,
i.e., maxθP

∑
t r
i
t(x̂t, at) where x̂t = f(x̂t−1, at−1; θ),

at = π(xt; θP ), x̂0 = x0, and rit(.) is defined in Equa-
tion (1). Alternatively, one could use LSTM to make for-
ward model itself multi-step. However, training a long term
multi-step prediction model is challenging and an active
area of research. In this paper, we show differentiable ex-
ploration results for short horizon only and leave multi-step
scenarios for future work.

3. Implementation Details and Baselines
Learning forward predictions in the feature space It
has been shown that learning forward-dynamics predictor
fθ in a feature space leads to better generalization in contrast
to raw pixel-space predictions (Burda et al., 2019; Pathak
et al., 2017). Our formulation is trivially extensible to any
representation space φ because all the operations can be
performed with φ(xt) instead of xt. Hence, in all of our
experiments, we train our forward prediction models in
feature space. In particular, we use random feature space
in all video games and navigation, classification features in
MNIST and ImageNet-pretrained ResNet-18 features in real
world robot experiments. We use 5 models in the ensemble.

Back-propagation through forward model To directly
optimize the policy with respect to the loss function of the
forward predictor, as discussed in Section 2.3, we need to
backpropagate all the way through action sampling process
from the policy. In case of continuous action space, one
could achieve this via making policy deterministic, i.e. at =
πθP with epsilon-greedy sampling (Lillicrap et al., 2016).
For discrete action space, we found that straight-through
estimator (Bengio et al., 2013) works well in practice.

Baseline Comparisons ‘Disagreement’ refers to our ex-
ploration formulation optimized using PPO (Schulman et al.,
2017) as discussed in Section 2.1, unless mentioned other-
wise. ‘Disagreement [Differentiable]’ refers to the direct
policy optimization for our formulation as described in Sec-
tion 2.3. ‘Pathak et.al. [ICML 2017]’ refers to the curiosity-
driven exploration formulation based on the prediction error
of the learned forward dynamics model in inverse model ac-
tion space (Pathak et al., 2017). ‘Burda et.al. [ICLR 2019]’
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Figure 2. Sanity Check in Non-Stochastic Environments: We compare different intrinsic reward formulations across near-deterministic,
non-stochastic standard benchmark of the Atari games. Our disagreement-based approach compares favorably to state-of-the-art
approaches without losing accuracy in non-stochastic scenarios.

refers to the random feature-based prediction-error (Burda
et al., 2019). ‘Pred-Error Variance’ is an alternative abla-
tion where we train the agent to maximize the variance of
the prediction error as opposed to the variance of model
output itself. Finally, we also compare our performance to
Bayesian Neural Networks for measuring variance. In par-
ticular, we compared to Dropout NN (Gal & Ghahramani,
2015) represented as ‘Bayesian Disagreement’.

4. Experiments
We evaluate our approach on several environments includ-
ing Atari games, 3D navigation in Unity, MNIST, object
manipulation in Mujoco and real world robotic manipula-
tion task using Sawyer arm. Our experiments comprise of
three parts: a) verifying the performance on standard non-
stochastic environments; b) comparison on environments
with stochasticity in either transition dynamics or observa-
tion space; and c) validating the efficiency of differentiable
policy optimization facilitated by our objective.

4.1. Sanity Check in Non-Stochastic Environments

We first verify whether our disagreement formulation is able
to maintain the performance on the standard environment
as compared to state of the art exploration techniques. Al-
though the primary advantage of our approach is in handling
stochasticity and improving efficiency via differentiable pol-
icy optimization, it should not come at the cost of perfor-
mance in nearly-deterministic scenarios. We run this sanity
check on standard Atari benchmark suite, as shown in Fig-
ure 2. These games are not completely deterministic and
have some randomness as to where the agent is spawned
upon game resets (Mnih et al., 2015). The agent is trained
with only an intrinsic reward, without any external reward
from the game environment. The external reward is only
used as a proxy to evaluate the quality of exploration and

not shown to the agent.

We train our ensemble of models for computing disagree-
ment in the embedding space of a random network as dis-
cussed in Section 3. The performance is compared to curios-
ity formulation (Pathak et al., 2017), curiosity with random
features (Burda et al., 2019), Bayesian network based uncer-
tainty and variance of prediction error. As seen in the results,
our method is as good as or slightly better than state-of-the-
art exploration methods in most of the scenarios. Overall,
these experiments suggest that our exploration formulation
which is only driven by disagreement between models out-
put compares favorably to state of the art methods. Note that
the variance of prediction error performs significantly worse.
This is so because the low variance in prediction error of
different models doesn’t necessarily mean they will agree
on the next state prediction. Hence, ‘Pred-Error Variance’
may sometimes incorrectly stop exploring even if output
prediction across models is drastically different.

4.2. Exploration in Stochastic Environments

A) Noisy MNIST. We first build a toy task on MNIST to
intuitively demonstrate the contrast between disagreement-
based intrinsic reward and prediction error-based re-
ward (Pathak et al., 2017) in stochastic setups. This is a
one-step environment where the agent starts by randomly
observing an MNIST image from either class 0 or class 1.
The dynamics of the environment are defined as follows:
1) images with label 0 always transition to another image
from class 0. 2) Images with label 1 transition to a randomly
chosen image from class label 2 to 9. This ensures that a
transition from images with label 0 has low stochasticity
(i.e., transition to the same label). On the other hand, transi-
tions from images with label 1 have high stochasticity. The
ideal intrinsic reward function should give similar incentive
(reward) to both the scenarios after the agent has observed a
significant number of transitions.
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Figure 3. Performance of disagreement across ensemble vs predic-
tion error based reward function on Noisy MNIST environment.
This environment has 2 sets of state with different level of stochas-
ticity associated with them. The disagreement-based intrinsic
reward converges to the ideal case of assigning the same reward
value for both states. However, the prediction-error based reward
function assigns a high reward to states with high stochasticity.

Figure 3 shows the performance of these methods on the
test set of MNIST as a function of the number of states
visited by the agent. Even at convergence, the prediction
error based model assigns more reward to the observations
with higher stochasticity, i.e., images with label 1. This
behavior is detrimental since the transition from states of
images with label 1 cannot ever be perfectly modeled and
hence the agent will get stuck forever. In contrast, our
ensemble-based disagreement method converges to almost
zero intrinsic reward in both the scenarios after the agent
has seen enough samples, as desired.

B) 3D Navigation in Unity. The goal in this setup is to
train the agent to reach a target location in the maze. The
agent receives a sparse reward of +1 on reaching the goal.
For all the methods, we train the policy of the agent to
maximize the summation of intrinsic and sparse extrinsic re-
ward. This particular environment is a replica of VizDoom-
MyWayHome environment in unity ML-agent and was pro-
posed in Burda et al. (2019). Interestingly, this environment
has 2 variants, one of which has a TV on the wall. The
agent can change the channel of the TV but the content is
stochastic (random images appear after pressing button).
The agent can start randomly anywhere in the maze in each
episode, but the goal location is fixed. We compare our pro-
posed method with state-of-the-art prediction error-based
exploration (Burda et al., 2019). The results are shown
in Figure 4. Our approach performs similar to the base-
line in the non-TV setup and outperforms the baseline in
the presence of the TV. This result demonstrates that an
ensemble-based disagreement could be a viable alternative
in realistic stochastic setups.

C) Atari with Sticky Actions. As discussed in Sec-
tion 4.1, the usual Atari setup is nearly deterministic. There-
fore, a recent study (Machado et al., 2017) proposed to

Figure 4. 3D Navigation in Unity: Comparison of prediction-
error based curiosity reward with our proposed disagreement-based
exploration on 3D navigation task in Unity with and without the
presence of TV+remote. While both the approaches perform simi-
lar in normal case (left), disagreement-based approach performs
better in the presence of stochasticity (right).

introduce stochasticity in Atari games by making actions
‘sticky’, i.e., at each step, either the agent’s intended ac-
tion is executed or the previously executed action is re-
peated with equal probability. As shown in Figure 5, our
disagreement-based exploration approach outperforms pre-
vious state-of-the-art approaches. In Pong, our approach
starts slightly slower than Burda et.al. (Burda et al., 2019),
but eventually achieves a higher score. Further note that the
Bayesian network-based disagreement does not perform as
well as ensemble-based disagreement. This suggests that
perhaps dropout (Gal & Ghahramani, 2015) isn’t able to
capture good uncertainty estimate in practice. These experi-
ments along with the navigation experiment, demonstrate
the potential of ensembles in the face of stochasticity.

4.3. Differentiable Exploration in Structured Envs

We now evaluate the differentiable exploration objective
proposed in Section 2.3. As discussed earlier, the policy is
optimized via direct analytic gradients from the exploration
module. Therefore, the horizon of exploration depends
directly on the horizon of the module. Since training long-
horizon models from high dimensional inputs (images) is
still an unsolved problem, we evaluate our proposed formu-
lation on relatively short horizon scenarios. However, to
compensate for the length of the horizon, we test on large
action space setups for real-world robot manipulation task.

A) Enduro Video Game. In this game, the goal of the
agent is to steer the car on racing track to avoid enemies.
The agent is trained to explore via purely intrinsic rewards,
and the extrinsic reward is only used for evaluation. In order
to steer the car, the agent doesn’t need to model long-range
dependencies. Hence, in this environment, we combine our
differentiable policy optimization with reinforcement learn-
ing (PPO) to maximize our disagreement based intrinsic



Self-Supervised Exploration via Disagreement

Figure 5. Stochastic Atari Games: Comparison of different ex-
ploration techniques in the the Atari (‘sticky’) environment. The
disagreement-based exploration is robust across both the scenarios.

reward. The RL captures discounted long term dependency
while our differentiable formulation should efficiently take
care of short-horizon dependencies. We compare this for-
mulation to purely PPO based optimization of our intrinsic
reward. As shown in Figure 6, our differentiable explo-
ration expedites the learning of the agent suggesting the
efficacy of direct gradient optimization. We now evaluate
the performance of only differentiable exploration (without
reinforcement) in short-horizon and large-structured action
space setups.

B) Object Manipulation by Exploration.

We consider the task of object manipulation in complex
scenarios. Our setup consists of a 7-DOF robotic arm that
could be tasked to interact with the objects kept on the
table in front of it. The objects are kept randomly in the
workspace of the robot on the table. Robot’s action space is
end-effector position control: a) location (x, y) of point on
the surface of table, b) angle of approach θ, and c) gripper
status, a binary value indicating whether to grasp (open
the gripper fingers) or push (keep fingers close). All of
our experiments use raw visual RGBD images as input and
predict actions as output. Note that, to accurately grasp
or push objects, the agent needs to figure out an accurate
combination of location, orientation and gripper status.

The action space is discretized into 224× 224 locations, 16
orientations for grasping (fingers close) and 16 orientations
for pushing leading to final dimension of 224× 224× 32.
The policy takes as input a 224 × 224 RGBD image and
produces push and grasp action probabilities for each pixel.
Following (Zeng et al., 2018), instead of adding the 16
rotations in the output, we pass 16 equally spaced rotated
images to the network and then sample actions based on
the output of all the inputs. This exploits the convolutional
structure of the network. The task has a short horizon but
very large state and action spaces. We make no assumption
about either the environment or the training signal. Our
robotic agents explore the work-space purely out of their

Figure 6. Performance comparison of disagreement-based explo-
ration with or without the differentiable policy optimization in
Enduro Atari Game. Differentiability helps the agent learn faster.

own intrinsic reward in a pursuit to develop useful skills.
We have instantiated this setup in a Mujoco simulation as
well as in the real world robotics scenarios.

B1) Object Manipulation in MuJoCo. We first carry out
a study in simulation to compare the performance of differ-
entiable variant of our disagreement objective against the
reinforcement learning based optimization. We used Mu-
JoCo to simulate the robot performing grasping and pushing
on tabletop environment as described above.

To evaluate the quality of exploration, we measure the fre-
quency at which our agent interacts (i.e., touches) with the
object. This measure is just used to evaluate the exploration
quantitatively and is not used as a training signal. It repre-
sents how quickly our agent’s policy learns to explore an
interesting part of space. Figures 7a shows the performance
when the environment consists of just a single object which
makes it really difficult to touch the object randomly. Our
approach is able to exploit the structure in the loss, resulting
in order of magnitude faster learning than REINFORCE.

B2) Real-World Robotic Manipulation. We now deploy
our sample-efficient exploration formulation on real-world
robotics setup. The real-world poses additional challenges,
unlike simulated environments in terms of behavior and
the dynamics of varied object types. Our robotic setup
consisted of a Sawyer-arm with a table placed in front of it.
We mounted KinectV2 at a fixed location from the robot to
receive RGBD observations of the environment.

In every run, the robot starts with 3 objects placed in front
of it. Unlike other self-supervised robot learning setups, we
keep fewer objects to make exploration problem harder so
that it is not trivial to interact with the objects by acting
randomly. If either the robot completes 100 interactions
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(b) Real Robot (c) Real Robot Setup
Figure 7. Measuring object interaction rate with respect to the number of samples in (a) Mujoco, and (b) real-world robot. Note that the
Mujoco plot is in log-scale. We measure the exploration quality by evaluating the object interaction frequency of the agent. In both the
environments, our differentiable policy optimization explores more efficiently. (c) A snapshot of the real-robotic setup.

or there are no objects in front of it, objects are replaced
manually. Out of a total of 30 objects, we created a set of 20
objects for training and 10 objects for testing. We use the
same metric as used in the simulation above (i.e., number
of object interactions) to measure the effectiveness of our
exploration policy during training. We monitor the change
in the RGBD image to see if the robot has interacted with
objects. Figure 7b shows the effectiveness of differentiable
policy optimization for disagreement over prediction-error
based curiosity objective. Differentiable-disagreement al-
lows the robotic agent to learn to interact with objects in
less than 1000 examples.

We further test the skills learned by our robot during its
exploration by measuring object-interaction frequency on
a set of 10 held-out test objects. For both the methods, we
use the checkpoint saved after 700 robot interaction with
the environment. For each model, we evaluate a total of
80 robot interaction steps with three test objects kept in
front. The environment is reset after every 10 robot steps
during evaluation. Our final disagreement exploration policy
interacts approximately 67% of times with unseen objects,
whereas a random policy performs at 17%. On the other
hand, it seems that REINFORCE-based curiosity policy just
collapses and only 1% of actions involve interaction with
objects. Videos are available at https://pathak22.
github.io/exploration-by-disagreement/.

5. Related Work
Exploration is a well-studied problem in the field of rein-
forcement learning. Early approaches focused on studying
exploration from theoretical perspective (Strehl & Littman,
2008) and proposed Bayesian formulations (Deisenroth &
Rasmussen, 2011a; Kolter & Ng, 2009) but they are usually
hard to scale to higher dimensions (e.g., images). In this
paper, we focus on the specific problem of exploration using
intrinsic rewards. A large family of approaches use “curios-
ity” as an intrinsic reward for training the agents. A good
summary of early work in curiosity-driven rewards can be
found in (Oudeyer & Kaplan, 2009; Oudeyer et al., 2007).

Most approaches use some form of prediction-error between
the learned model and environment behavior (Pathak et al.,
2017). This prediction error can also be formulated as sur-
prise (Achiam & Sastry, 2017; Schmidhuber, 1991a; Sun
et al., 2011). Other techniques incentivize exploration of
states and actions where prediction of a forward model is
highly-uncertain (Houthooft et al., 2016; Still & Precup,
2012). Finally, approaches such as Lopes et al. (2012) try
to explore state space which help improve the prediction
model. Please refer to the introduction Section 1 for details
on formulations using curiosity, visitation count or diversity.
However, most of these efforts study the problem in the
context of external rewards.

Apart from intrinsic rewards, other approaches include us-
ing an adversarial game (Sukhbaatar et al., 2018) where one
agent gives the goal states and hence guiding exploration.
Gregor et al. (2017) introduce a formulation of empower-
ment where agent prefers to go to states where it expects
it will achieve the most control after learning. Researchers
have also tried using perturbation of learned policy for ex-
ploration (Fortunato et al., 2017; Fu et al., 2017; Plappert
et al., 2017) and using value function estimates (Osband
et al., 2016). Again these approaches have mostly been
considered in the context of external rewards and are not
efficient enough to be scalable to real robotics setup.

Our work is inspired by large-body of work in active learn-
ing (AL). In the AL setting, given a collection of unlabeled
examples, a learner selects which samples will be labeled
by an oracle (Settles, 2010). Common selection criteria
include entropy (Dagan & Engelson, 1995), uncertainty
sampling (Lewis & Gale, 1994) and expected informative-
ness (Houlsby et al., 2011). Our work is inspired by by (Se-
ung et al., 1992), and we apply the disagreement idea in a
completely different setting of exploration and show its ap-
plicability to environments with stochastic dynamics and im-
proving sample-efficiency. Concurrent to this work, Shyam
et al. (2019) also show the effectiveness of model-based
exploration in estimating novelty, and Henaff et al. (2019)
use variance regularization for policy learning via imitation.

https://pathak22.github.io/exploration-by-disagreement/
https://pathak22.github.io/exploration-by-disagreement/
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