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Abstract

We study a generalized setup for learning from demonstration to build an agent that
can manipulate novel objects in unseen scenarios by looking at only a single video
of human demonstration from a third-person perspective. To accomplish this goal,
our agent should not only learn to understand the intent of the demonstrated third-
person video in its context but also perform the intended task in its environment
configuration. Our central insight is to enforce this structure explicitly during
learning by decoupling what to achieve (intended task) from how to perform it
(controller). We propose a hierarchical setup where a high-level module learns to
generate a series of first-person sub-goals conditioned on the third-person video
demonstration, and a low-level controller predicts the actions to achieve those
sub-goals. Our agent acts from raw image observations without any access to the
full state information. We show results on a real robotic platform using Baxter for
the manipulation tasks of pouring and placing objects in a box. Project video and
code are at https://pathak22.github.io/hierarchical-imitation/.

1 Introduction

Humans have an extraordinary ability to perform complex operations by watching others. How do we
achieve this? Imitation requires inferring the goal/intention of the other person one is trying to imitate,
translating these goals into one’s own context, mapping the third-person’s actions to first-person
actions, and then finally using these translated goals and mapped actions to perform low-level control.
For example, as shown in Figure 1, imitating the pouring task not only involves understanding how
to change object states (tilt glass on top of another glass), but also imagining how to adapt goals to
novel objects in scene followed by low-level control to accomplish the task.

As one can imagine, simultaneously learning these functions is extremely difficult. Therefore, most
of the classical work in robotics has focused on a much-restricted version of the problem. One of the
most common setup is learning from demonstration (LfD) [2, 3, 16, 20, 24, 31], where demonstrations
are collected either by manually actuating the robot, i.e., kinesthetic demonstrations, or controlling
it via teleoperation. LfD involves learning a policy from such demonstrations with the hope that it
would generalize to new location/poses of the objects in unseen scenarios. Some recent works explore
a relatively general version where a robot learns to imitate a video of the demonstration collected
from either the robot’s viewpoint [19] or with only a little different expert viewpoint [30].

In this paper, we tackle the generalized setting of learning from third-person demonstrations. Our
agent first observes a video of a human demonstrating the task in front of it, and then it performs that
task by itself. We do not assume any access to the state-space information of the environment and
learn directly from raw camera images. To be successful, the robot needs to translate the observed
goal states to its own context (imagine the goals in its viewpoint) as well as map the third-person
actions to its trajectory. One way to solve this would be to use classical vision methods that estimate
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Figure 1: We study the general setup of learning from demonstration with of goal of building an agent that is
capable of imitating a single video of human demonstration to perform the task with novel objects and tasks.
The figure shows an example of a third-person video demonstration on top and the robotic agent trying to imitate
the setup with objects in front. As shown on the right, our approach is to decouple the learning process into
a hierarchy of what (high-level) module to translate the third-person video to first-person sub-goals and how
module (low-level) to achieve those sub-goals.

location/pose of objects as well as the human expert and then map the keypoints to robot actions.
However, hard-coding the correspondence from human keypoints to robot morphology is often non-
trivial, and this overall multi-stage approach is difficult to generalize to unseen object/task categories.
Another way is to leverage modern deep learning algorithms to learn an end-to-end function that
goes from video frames of human demonstration to output the series of joint angles required to
perform the task. This function can be trained in a supervised manner with ground truth kinesthetic
demonstrations. However, unfortunately, today’s deep learning vision algorithms require millions of
images for training. While recent approaches [30] attempt to handle this challenge via meta-learning,
the models for each of the tasks are separately trained and difficult to generalize to new tasks.

We propose an alternative approach by injecting hierarchical structure into the learning process
in-between inferring the high-level intention of the demonstrator and learning the low-level controller
to perform the desired task. We decouple the end-to-end pipeline into two modules. First, a high-level
module that generates goal conditioned on the human demonstration video (third-person view) and
the robot’s current observation (first-person view). It predicts a visual sub-goal in the first-person
view that roughly corresponds to an intermediate way-point in achieving the intended task described
in the demonstration video. Generating a visual sub-goal is a difficult learning problem and, hence,
we employ a conditional variant of Generative Adversarial Networks (GANs) [9] to generate realistic
rendering [9, 12, 14, 18]. Second, a low-level controller module outputs a sequence of actions to
achieve this visual sub-goal from its current observation. Both the modules are trained in a supervised
manner using human videos and robot joint angles trajectories, which are paired (with respect to
objects and tasks) but unaligned (with respect to time sequence). Our overall approach is summarized
in Figure 2. The key advantage of this modular separation into task-specific goal-generator and
task-independent low-level controller is that it improves the efficiency of our approach; how? The
data-hungry low-level controller is shared across all tasks allowing it: (a) to be sample-efficient (in
terms of data required per task) (b) robust and avoid overfitting.

We show experiments on a real robotic platform using Baxter across two scenarios: pouring and
placing objects in a box. We first systematically evaluate the quality of both the high-level and
low-level modules individually given perfect information on held-out test examples of human video
and robot trajectories. We then ablate the generalization properties of these modules across the same
task with different scenarios and different tasks with different scenarios. Finally, we deploy the
complete system on the Baxter robot for performing tasks with novel objects and demonstrations.

2 Problem Setup: Third Person Visual Imitation

Consider a robotic agent observing its current observation state st at time t. The action space
of the robot is a vector of joint angles, referred to as rt. Let IH be the sequence of images ht
(i.e., video) of a human demonstrating the task as observed by the robot in third-person view, i.e.,
IH ≡ (h0, h1, ..hT ). Our goal is to train the agent such that, at inference, it can follow a video of a
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Figure 2: Decoupled Hierarchical Control for Third-Person Visual Imitation Learning: We introduce a
hierarchical approach consisting of a goal generator that predicts a goal visual state which is then used by the
low-level controller as guidance to achieve a task. [Left] During training, the decoupled models are trained
independently. The goal generator takes as input the human video frames ht and ht+k along with the observed
robot state st to predict the visual goal state of the robot at t + k. The low level controller is trained using
st,at,st+1 triplets. [Right] At inference, the models are executed one after the other in a loop. After reaching
the current goal, the goal generator uses the new observed state st+1 and the next images of the human video to
generate a new goal for the low-level controller to attain.

novel human demonstration video IH starting from its initial state s0 by predicting a sequence of
joint angle configurations IR ≡ (r0, r1, . . . , rT ).

Our goal is to learn an agent that can imitate the action performed by the human expert in the third
person video. We want to imitate only from raw pixels without access to full-state information about
the environment. At training, we have access to a video of the human expert demonstration for a object
manipulation task IH ≡ (h0, h1, ..hT ), a video of the same demonstration performed kinesthetically
using the robot joint angle states IR ≡ (r0, r1, ..rT ) and a time series of the sequence of robot’s
first-person image observations τR ≡ (s0, s1, ..sT ). We leverage a recently released dataset of human
demonstration videos and robot trajectories [27] where the demonstrations and trajectories are paired,
but not exactly aligned in time. We sub-sample the robot and human demonstration sequences, which
helps them roughly get aligned. In our setup, we have access to all the three time-series data at the
training time, but only the time series data corresponding to the human demonstration image sequence
at the test time. The other two time series would be predicted or generated by our algorithm.

3 Hierarchical Controllers for Imitation

An end-to-end model that goes from human demonstration video and robot’s current observation to
directly predict the robot trajectories would require a lot of human demonstrations. Instead, we inject
the structure into the learning process by decoupling the imitation signal into what needs to be done
from how it needs to be done. Decoupling makes our approach modular and more sample efficient
than end-to-end learning. It also enables the system to be more interpretable, as the goal inference is
now disentangled from the control task allowing us to visualize the intermediate sub-goals.

Our approach consists of a two-level hierarchical modular approach. The high-level module is a goal
generator that infers the goal in the pixel space from a human video demonstration and translates it
into what it means in the context of the robot’s environment in the form of a pixel level representation.
The second step is an inverse controller, which follows up on the generated cues from the visual
goal inference model and generates an action for the robot to execute. These models are trained
independently, and at test time, they are alternatively executed for the robot to accomplish the
multi-step manipulation task, as illustrated in Figure 2.

3.1 High-Level Module: Goal Generator

The role of the high-level module is to translate the human demonstration images to generate sub-goals
images in a way that is understandable to the robot. This high-level goal-generator could be learned
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Figure 3: (a) The Goal Generator: The high-level goal generator network πH(.) takes as input the frames of
the human demonstration video ht, ht+k and the current observed state of the robot st at time t. It is trained to
generate the visual representation st+k of the robot at time t+ k. Instead of the complex goal image generation
problem, our setup reduces the setup into a simpler re-rendering problem, i.e., move the pixels of robot image in
the similar to the change in human demonstration images. (b) Low-level Controller: The inputs to the low-level
controller are the observed state of the robot st and goal state of the robot st+1. The model is trained to output
the action (at) that will cause it to transition to the goal state from st.

by leveraging the paired examples of human demonstration video and the robot demonstration video
from our training data. The most straightforward formulation is to express the goal-generator as image
translation, i.e., translating human demonstration image to robot demonstration. Image translation is
a well-studied problem in computer vision and approaches like Pix2Pix [12], CycleGAN [33] could
be directly deployed as-is. However, the stark difference between human and robot demonstration
images is in terms of viewpoint (third-person vs. first person) and appearance (human arm vs. robotic
arm) which makes these models much harder to train, and difficult to generalize as shown in Section 6.

We propose to handle this issue by translating change in the human demonstration image instead of
the image itself. In particular, we task the goal-generator to translate the current robot observation
image in the same manner as the corresponding human demonstration image is translated into the
next image in sequence. This forces the goal-generator to focus on how the pixels should move
(re-rendering) instead of figuring out the way harder task of generating the entire pixel distribution in
the first place (generation). An illustration is shown in Figure 3. Further, in order to generate realistic
looking sub-goals, we represent goal-generator via a conditioned version of generative adversarial
networks with a U-Net [22] style architecture [9, 12, 14, 18].

At any particular instant t, the input to the goal generator model πH(.) is the visual state of the robot
st as well as the visual states of the human demonstration ht and ht+n. This model is trained to
generate the visual state of the robot at the (t + n)th step which can be represented as st+n. The
overall optimization is as follows:

min
πH

max
D

Es∈S [log(D(s))] + E[log(1−D(πH(ht, ht+n, st)))] + λ‖πH(ht, ht+n, st)− st+n‖1

where D refers to the GAN discriminator classification network, state s is sampled form the set S of
real robot observations from the training data, and the triplet {ht, ht+n, st} are randomly sampled
from the time series data of human demonstration and corresponding robot observations. In practice,
we resort to using a wider context around the human demonstration images, for instance, more frames
surrounding ht and ht+n especially when the human and robot demonstrations are not aligned. The
L1-loss ensures that the correct frame is generated while the adversarial discriminator loss ensures
the generated samples are realistic [18].

3.2 Low-Level Module: Inverse Controller

The main purpose of the low-level inverse controller is to achieve the goals set by the goal generator.
The low-level inverse controller, πL(.), takes as input the present visual state of the robot demon-
stration (st) along with the predicted visual state of the robot demonstration for the next time step
(ŝt+n = πH(ht, ht+n, )) to predict the action that the robot should take to make the transition to its
next state (ŝt+n). Since the task we test on may be performed by the left or the right hand of the
robot depending on the human demonstration, we concatenate the seven joint angle states of the left
as well as the right hand of Baxter robot. In our case, the predicted action is a 14-dimensional tuple
of the joint angles of the robot’s arms. The inverse model uses spatial information from the images
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of the present visual state of the robot and the generated goal visual state to predict the action. The
network used is inspired by the ResNet-18 model [11] and is initialized with the weights obtained
from pretraining the network on ImageNet. An illustration of our controller is shown in Figure 3.

Note an exciting aspect of decoupling goals from the controller is that the controller need not be
specific to a particular task. We can share the inverse controller across the different types of tasks
like pouring, picking, sliding. Further, another advantage of decoupling goal inference from the
inverse model is the ability to utilize additional self-supervised data (rt, rt+1, st+1 pairs) which does
not have to rely on only perfectly curated demonstrations for training. We leave the self-supervised
training for future work.

3.3 Inference: Third-person Imitation

At inference, we run our high-level goal-generator and low-level inverse model in an alternating
manner. Given the robot’s current observation st and the human demonstration sequence IH , the
goal-generator πH(.) first generates a sub-goal ŝt+n. The low-level controller πL(.) then outputs the
series of robot joint angles to reach the state ŝt+n. This process is continued until the final image of
the human demonstration.

4 Implementation Details and Baselines

Training Dataset We use the MIME dataset [27] of human demonstrations to train our decoupled
hierarchical controllers. The dataset is collected using a Baxter robot and contains pairs of 8260
human-kinesthetic robot demonstrations spanned across 20 tasks. For the pouring task, we train
on 230 demonstrations, validate on 29, and test on 30 demonstrations. For the models trained on
multiple tasks, 6632 demonstrations were used for training, 829 for validation, and 829 for test. In
particular, each example contains triplet of human demonstration image sequence, robot demon-
stration images, and robot’s joint angle state, i.e., {(h0, h1, ..hT ), (r̂0, r̂1, . . . , r̂T ), (s0, s1, ...sT )}.
We sub-sampled the trajectories (both images and joint angle states) to a fixed length of 200 time
steps for training our models. For training low-level inverse model, we perform regression the action
space of robot at which is a fourteen dimensional joint angle state [θ1, θ2, θ3..., θ14]. All the training
and implementation details related to our hierarchical controllers are provided in Section A.1 of the
supplementary.

Baseline Comparisons We first perform ablations of our modules and compare them to different
possible architectures, including CycleGAN [33], and L1, L2 loss based prediction models. We then
compare our joint approach to two different baselines: (a) End-to-end Baseline [27]: In this approach,
both the task of inference and control are handled by a single network. The inputs to the network are
consecutive frames of the human demonstration around a time step t, along with the image of the
robot demonstration at the time step t. The network predicts the action that the robot must then take at
time step t to transition to its state at time step t+1. (b) DAML [30]: The second baseline, we compare
our results with is the Domain Adaptive Meta-Learning (DAML [30]) baseline. The algorithm is
targeted for recovering the best network parameters for a task via a single gradient update at test time
using meta-learning.

5 Results: Generalization of Individual Hierarchical Modules

The hierarchy modules run alternatively at test time, and hence, each model relies on the other’s
performance at the previous step. Therefore, in this section, we evaluate the generalization abilities
of both of our individual modules of the hierarchy while assuming ground truth access to others. We
evaluate top-level goal generators assuming the inverse model is perfect and evaluate the inverse-
model assuming access to perfect goal-generator. We study generalization across three different
scenarios: new location, new objects, and new tasks.

5.1 Generalization to new positions of the same object

Goal Generator: The ability to condition inferred goals in the robot’s own setting is a crucial aspect
of our approach. The sensitivity analysis of the goal generator with respect to the position of the
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Figure 4: (a) Goal Generator Comparison: The predictions of the outputs generated by the goal generator
when optimized using different methods. Our model, which is trained to translate the robot’s current image
instead of generating from scratch, generates the sharpest and accurate results. (b) Sensitivity Analysis of
the Goal Generator: Given the input human demonstration of a task, we test the sensitivity of goal-generate
wrt object locations. Our model can hallucinate accurate sub-goals in accordance with the object location. (c)
Goal Generator Predictions: The images in the first row are the input observed robot states. The second row
contains goals generated by the goal generator from the input images. The predictions are at an interval of ten
steps (approx. 2sec) ahead into the future. As shown, predicted sub-goals are consistent across the trajectory.

objects can help us understand how well the goal generator generalizes in terms of object positions.
In Figure 4 (b), we show a scenario where the input of the human demonstration is fixed, but the
positions of the objects are varied at test time. The predictions of the goal generator reveal that it is
responsive in accordance with change in object positioning. A quantitative analysis of this positional
generalization is performed jointly with the evaluation of generalization ability to new objects in
Table 1.

Inverse model: To check the ability of the inverse model to generalize to new positions (given perfect
goal-generator) of the object, we test the inverse model using ground truth images of the test set. This
quantitative evaluation is performed jointly with the evaluation of generalization to novel object in
Table 2 and discussed in the next sub-section.

5.2 Generalization to new objects

We now evaluate the ability of our models to generalize manipulation skills to unseen objects.

Goal Generator: Figure 4(a) shows the ability of the goal generator to generate meaningful sub-
goals given a demonstration with novel objects. A quantitative evaluation is shown in Table 1 for
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Method L2 L1 PSNR SSIM
L1 only 60.24 72.57 2.92 0.15
L2 only 76.44 75.94 3.02 0.14
Cycle GAN [33] 99.15 118.67 2.37 0.11

Goal-Gen(Ours) 39.98 52.37 3.95 0.18

Table 1: Goal-Generator generalization to novel ob-
jects and locations. Our goal generator outperforms
the other approaches, both qualitatively and quantita-
tively, across different loss metrics. The models are
evaluated on the pouring test set.

Method RMSE (mean) RMSE (stderr)
End to End (all) [27] 14.7 2.3
End to End (single) [27] 8.9 1.7
DAML (single) [30] 11.84 2.1
Ours (all) 14.4 2.2
Ours (single) 8.1 1.6

Table 2: Inverse model generalization to novel objects
and locations. This table contains models trained on
all tasks of the MIME dataset (all) and just the task
of pouring (single). The models are evaluated on the
common test set of pouring

the goal generation ability when tested with novel objects in different configurations. Our approach
outperforms the baselines on all four metrics and generalizes better to new objects both quantitatively
(Table 1) and qualitatively (Figure 4(a)). In addition to the baselines shown in Table 1, we also tried
an optical flow baseline which did not perform well and was unable to account for in-plane rotations
that the task like pouring required. The performance is (L1: 127.28, SSIM:0.81) significantly worse
than other methods.

Inverse model: A quantitative evaluation of generalization to new objects and locations is shown in
Table 2. Our model outperforms all other baselines by a significant margin. The generalization to
diverse positions of objects of the inverse model can be attributed to its training across many different
positions of diverse objects.

In addition to the baselines in Table 2, we also compare against the two feature matching based
approaches. First, we compute trajectory-based features of the frames of human demonstration and
then find the nearest neighbors from the other demonstrations in the training set. The joint angles
corresponding to the nearest demonstrations are then considered as the prediction. The trajectory-
based features were computed using state-of-the-art temporal deep visual features trained on video
action datasets [4]. Using these features as keys to match the nearest neighbors resulted in a rMSE of
22.20 with a stderr of 2.14. Secondly, we used a static feature-based model where we align human
demonstration frames with robot ones in SIFT feature space. This resulted in a rMSE value of 45.32
with a stderr of 6.12. Both the baselines perform significantly worse than our results shown in Table 2.
In particular, SIFT features did not perform well in finding correspondences between the human and
robot demonstrations because of the large domain gap.

5.3 Generalization to new tasks

So far, we have tested generalization with respect to objects and their positions. We now evaluate the
ability of our approach to generalize across tasks.

Goal Generator: The goal generator is not task-agnostic. We leave training a task-agnostic goal
generator for future work. In principle, since both the goal generator and inverse model don’t depend
on temporal information, it should potentially be possible to train a task-agnostic Goal Generator.

Method Train (15 Tasks) Test (5 Tasks)
Mean Stderr Mean Stderr

End to End [27] 23.63 1.06 24.83 1.56
DAML [30] 35.90 1.56 36.45 1.55

Inv. Model (Ours) 18.05 0.76 16.90 1.04

Table 3: Generalization of the Inverse-Model to New
Tasks. Our inverse model is trained on 15 tasks of the
MIME dataset. It is evaluated on a held-out set from
training tasks as well as 5 novel tasks where it signifi-
cantly outperforms the baselines.

Inverse Model: The inverse model is not
trained to perform a particular task. No tem-
poral knowledge of trajectories is used while
training the module. This ensures that while
the model predicts every step of the trajectory
it doesn’t have any preconceived notion about
what the entire trajectory will be. Hence, the role
of low-level controller (inverse model) is decou-
pled from the intent of the task (goal-generator)
making it agnostic to the task. The ability of the
model to generalize to new tasks is demonstrated
in Table 3. We train on the first 15 tasks from
MIME dataset and test on a held-out dataset for
15 training as well 5 novel tasks. Our model has a much lower error on both the trained tasks as well
as the novel tasks than the baseline methods. We want to note that DAML [30] is a generic approach,
not mainly designed for task transfer in third person, and the results in the original paper have been
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shown in the context of single planar-manipulation tasks. It has not been shown to scale to training
on multiple task categories together. Hence, further changes might be required to scale DAML for
transfer across tasks.

6 Results: Generalization and Evaluation of Joint Hierarchical Model

The final test of our approach is to evaluate how the decoupled models perform when run
together. Robot demo videos are on the project website https://pathak22.github.io/
hierarchical-imitation/.

We look at two tasks - Pouring and Placing in a box. In the task of pouring, the robot is required
to start at a given location and then move to a goal location of the cup that needs to be poured into.
This task requires the model to predict the different parts of the task correctly which are reaching
the goal cup and pouring into it. Since the controller of the robot is imperfect and the predictions
can be slightly noisy, we consider a reach to be successful if the robot reaches within 5cm of the
cup. Similarly, we consider pouring to be successful if the robot reaches and does the pouring
action in 5cm radius of the cup. These evaluation metrics are similar to those used by Yu et al. [30].

Method Pouring Placing
Reaches Pours Reaches Drops

End to End [27] 20% 8% 20% 10%
DAML [30] 25% 15% 20% 10%

Hierarchy (Ours) 75% 60% 70% 50%

Table 4: Joint evaluation of our hierarchical decoupled
controllers. Our approach outperforms the other base-
lines on the tasks of pouring and placing in a box with
a significant margin, however, it is still much far from
perfect completion of the task.

For the task of placing in the box, we categorize
a successful placing in a box if the robot is able
to reach within 5cm of the box and is then able to
drop the object within 5cm of the box. Further,
the models are trained on the task on pouring
alone and we evaluate how they generalize to
the task of placing.

For the high-level goal generator, it is crucial to
generate good quality results over a long hori-
zon to ensure the successful execution of the
task. Our approach of using a goal generator to
predict high-level goals and an Inverse model to
follow up on the generated goals in alternation
outperforms the other approaches, as shown in Table 4. The test sets comprised of demonstrations
with novel objects placed in random locations. The test not only required the individual models
to generalize well but also works well in tandem with the possibility of imperfect predictions and
actions from one another.

7 Related Work

Inferring the intent of interaction from a human demonstration and successfully enabling a robot to
replicate the task in it’s own environment ties to several related areas discussed as follows.

Domain Adaptation: Addressing the domain shift between the human demonstrator and robot
(e.g., appearance, view-points) is one of the goals of our setup. There has been previous work on
transfer in visual space [12, 32] and on tackling domain shift from simulation environments to the
real-world [5, 17]. Some of these approaches map data points from one domain to another [12, 32].
Other approaches aid the transfer by finding domain invariant representations [23, 28]. Along similar
lines, Sermanet et al. [26] looks at learning view-point invariant representations that are then used for
third-person imitation. Training such a system would require training data with videos collected from
multiple viewpoints. Moreover, learning task-invariant features might not alone be enough to aid the
transfer to the robot’s setting because of the differences in the physical configurations. Our approach
handles these issues via modular controllers.

Learning from Demonstrations (LfD): LfD generally uses demonstrations obtained from trajec-
tories collected by kinesthetic teaching, teleoperation, or using motion capture technology on the
robot arm [2, 3, 16, 20, 24, 31]. LfD has been successful in learning complex tasks from expert
human trajectories, for instance, playing table-tennis [15], autonomous helicopter aerobatics, and
drone flying [1]. Most of these focus on learning a task from a handful of expert demonstrations for a
single task. Our goal is to start by using demonstration data collected across some objects and tasks
but enable the robot to imitate the task by just watching one video of a human demonstrating the task
with new objects.
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Explicitly Inferring Rewards: Other approaches explicitly infer the reward associated with per-
forming a task from the human demonstrations through techniques such as inverse reinforcement
learning [21, 25]. The rewards become representations of the sequence of goals of the task. After
construction of the reward functions, the robot is trained using reinforcement learning by collecting
samples in its environment to maximize the reward. However, such systems end up needing signifi-
cantly large amounts of real-world data and have to be re-trained for every new task from scratch,
which makes them difficult to scale in the real world. In contrast, our supervised learning approach is
trained via maximum likelihood, and thus, efficient enough to scale to real robots.

Visual Foresight: Visual foresight has been popular for self-supervised robot manipulation [6–8, 29],
but it relies on task specification in the form of dots in the image space and are action conditioned
visual space predictions. Our setting relies on no hand specified goals. The goals in our setting are
specified from the human demonstration videos directly. This flexibility lets us specify harder tasks
such as pouring, which would have been difficult to specify from dots on images alone.

8 Discussions

We present decoupled hierarchical controllers for third-person imitation learning. Our approach is
capable of inferring the task from a single third-person human demonstration and executing it on a
real robot from first-person perspective. Our approach works from raw pixel input and does not make
any assumption about the problem setup. Our results demonstrate the advantage of using a decoupled
model over an end-to-end approach and other baselines in terms of improved generalization to novel
objects in unseen configurations.

Future Directions: Our high-level and low-level modules currently operate at a per-time step level
and don’t make use of temporal information, which results in the predicted trajectories being shaky.
A naive inverse controller modeled via LSTM could incorporate the temporal information but it
easily learns to cheat by memorizing the mean trajectory making it hard to generalize to novel
tasks. However, training on lots of tasks together could potentially alleviate this limitation. An
added advantage of the explicit decoupling of the models is the ability to utilize additional self-
supervised data to train the low-level controller and make it robust to failure and different types of
joint configurations. We leave these directions for future work to explore.
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A Supplementary Material

A.1 Implementation Details

Goal Generator (high-level) The goal generator uses pix2pix[12] inspired framework. The gener-
ator network is a U-Net 128 block with skip connections between the ith and (m− 1)th layers where
m is the number of layers in the U-Net block. The encoder and decoder architecture are as shown in
Figure 3 of the main paper. The input to the model is an image of shape (128X128). The images
are randomly jittered by resizing to 140X140 and then cropped back to 128X128. The network
is optimized using Adam [13] with a learning rate of 0.0002 along with momentum parameters
β1 = 0.5, β2 = 0.999.

The input to the network contains the human demonstration image at time step t and t+ k (ht and
ht+k) along with the robot demonstration image at time step t (st). The output of the network is the
robot goal state (ŝt+k) at time t+ k. While we want precise goal predictions which would require
the long multi-step task to be broken into smaller steps, we also require the goal generator to predict
goals that look significantly different from the current observed state st so the inverse controller can
predict a change in state. Empirically, we find that after subsampling the trajectories to 200 time
steps a value of k = 10 handles this trade-off best.
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Inverse Controllers (low-level) The inverse model or the local controller consists of 4 convolution
blocks of ResNet-18 [10] followed by three fully connected layers. The ResNet blocks are initialized
with pre-trained weights on ImageNet. The input to the network was the robot state at time t and
the goal state t + 1. The action predicted by the network was a fourteen-dimensional tuple of the
joint angle states of the different joints of both the left and right arms of Baxter, [θ1, θ2, θ3..., θ14].
The input images were jittered by random cropping 85% of the image to make the model robust to
vibrations in the robot arms and camera. The learning rate used to train the model was 0.001 and the
optimized using Adam [13].

A.2 Generalization of Inverse Model: Simulation Experiments

In addition to our real-world experiments discussed in Section 5.2 of the main paper, we also trained
an inverse model in simulation with the Sawyer robot. The trajectories used to train Sawyer were
obtained from a policy trained on reaching with different objects placed in front of it. Demonstrations
were created by training policies using proximal policy optimization(PPO). The policies were trained
on a diverse set of objects to collect 500 demonstrations. For different object locations on new objects
at test time, our learned controller achieves mean RMSE of 6.09 with a stderr of 2.8, which suggests
the robustness of the controller.
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