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How it needs 10 be done?

TASK AGNOSTIC

Why is it hard?

e Inferring useful information in the video
e Handling domain shift

e Every major part of the sequence needs (o be executed correctly - Ex: For
pouring, it needs to reach the cup before twisting its hand

e The manipulation is challenging. (6D, novel objects and positioning, no force
feedback)

Issue

Scenario 1:

Sequentially predict the
‘ states of the robot arm
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Input: Human demonstration + first image of object

Output

Issue; Not closed loop. No understanding of how the positions of the
objects placed in front of the robot change with ime!

Scenario 2:

Sequentially predict the
‘ states of the robot arm
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Input: Human Demo + Robot visual Output
state

How do we force it to use task information from Human demonstration
alone but condition its action on current observable state?

We want to build a model that can infer the intent from the M
Human Demonstration of a task and act in the Robot’s
current environment to then accomplish the task. _ | - '.
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We decouple the task of
Goal Inference from
[Local Control
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Goal Generator: Given
human demo and
present visual state of
the robot we
hallucinate the next
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current visual state to
predict the action!
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Table | Goal-Genersor generalization to novel ob-
oty and locatons. Our goal pescralor outperionms
the other approaches. both qualstatnely and quantita
tvely, across dulferesd doss metnics. The models are
evabasted on the pouring tosl st
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Table V. Generalizatvon of the laverse-Maodel 10 New
Tanks Ouwr iverse mode] o tramed oo 1S ks of the
MIME dataset. It s evaluated on a held-out set from
trasneng tasks as well as S povel tasks where ot g
cantly outperformns the basclines
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Table 2. lmverse model peacraliration 10 novel obyects
and Jocations. This table contams modcls trasncd om
all tasks of the MIME dataset (all) and pust the sk

of pouring (sngle). The models are evaluasted on the
Comnon el set of pourieg
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Table 4: Joint evaluation of our hierarchical decoupled
controllers. Our approach outperforms the other base-
lines on the tasks of pounng and placing 1in a box with
a significant margin, however, it is still much far from
perfect complction of the task.



