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Abstract

Reinforcement learning algorithms rely on carefully engineering environment
rewards that are extrinsic to the agent. However, annotating each environment with
hand-designed, dense rewards is not scalable, motivating the need for developing
reward functions that are intrinsic to the agent. Curiosity is a type of intrinsic
reward function which uses prediction error as reward signal. In this paper: (a) We
perform the first large-scale study of purely curiosity-driven learning, i.e. without
any extrinsic rewards, across 54 standard benchmark environments, including
the Atari game suite. Our results show surprisingly good performance, and a
high degree of alignment between the intrinsic curiosity objective and the hand-
designed extrinsic rewards of many game environments. (b) We investigate the
effect of using different feature spaces for computing prediction error and show
that random features are sufficient for many popular RL game benchmarks, but
learned features appear to generalize better (e.g. to novel game levels in Super
Mario Bros.). (c) We demonstrate limitations of the prediction-based rewards in
stochastic setups. Game-play videos and code are at https://pathak22.github.
io/large-scale-curiosity/.

1 Introduction

Reinforcement learning (RL) has emerged as a popular method for training agents to perform complex
tasks. In RL, the agent policy is trained by maximizing a reward function that is designed to align
with the task. The rewards are extrinsic to the agent and specific to the environment they are defined
for. Most of the success in RL has been achieved when this reward function is dense and well-shaped,
e.g., a running “score” in a video game [21]. However, designing a well-shaped reward function is a
notoriously challenging engineering problem. An alternative to “shaping” an extrinsic reward is to
supplement it with dense intrinsic rewards [26], that is, rewards that are generated by the agent itself.
Examples of intrinsic reward include “curiosity” [11, 22, 27, 35, 40] which uses prediction error as
reward signal, and “visitation counts” [3, 20, 24, 30] which discourages the agent from revisiting the
same states. The idea is that these intrinsic rewards will bridge the gaps between sparse extrinsic
rewards by guiding the agent to efficiently explore the environment to find the next extrinsic reward.

But what about scenarios with no extrinsic reward at all? This is not as strange as it sounds.
Developmental psychologists talk about intrinsic motivation (i.e., curiosity) as the primary driver
in the early stages of development [32, 41]: babies appear to employ goal-less exploration to learn
skills that will be useful later on in life. There are plenty of other examples, from playing Minecraft
to visiting your local zoo, where no extrinsic rewards are required. Indeed, there is evidence that
pre-training an agent on a given environment using only intrinsic rewards allows it to learn much
faster when fine-tuned to a novel task in a novel environment [27, 28]. Yet, so far, there has been no
systematic study of learning with only intrinsic rewards.
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Figure 1: A snapshot of the 54 environments investigated in the paper. We show that agents are able to make
progress using no extrinsic reward, or end-of-episode signal, and only using curiosity. Video results, code and
models at https://pathak22.github.io/large-scale-curiosity/.

In this paper, we perform a large-scale empirical study of agents driven purely by intrinsic rewards
across a range of diverse simulated environments. In particular, we choose the dynamics-based
curiosity model of intrinsic reward presented in Pathak et al. [27] because it is scalable and trivially
parallelizable, making it ideal for large-scale experimentation. The central idea is to represent
intrinsic reward as the error in predicting the consequence of the agent’s action given its current state,
i.e., the prediction error of learned forward-dynamics of the agent. We thoroughly investigate the
dynamics-based curiosity across 54 environments: video games, physics engine simulations, and
virtual 3D navigation tasks, shown in Figure 1.

To develop a better understanding of curiosity-driven learning, we further study the crucial factors that
determine its performance. In particular, predicting future state in high dimensional raw observation
space (e.g., images) is a challenging problem and, as shown by recent works [27, 42], learning
dynamics in an auxiliary feature space leads to improved results. However, how one should choose
such an embedding space is a critical, yet open research problem. Through a systematic ablation, we
examine the role of different ways to encode agent’s observation such that an agent can perform well
driven purely by its own curiosity. To ensure stable online training of dynamics, we argue that the
desired embedding space should: (a) be compact in terms of dimensionality, (b) preserve sufficient
information about the observation, and (c) be a stationary function of the observations. We show
that encoding observations via a random network turn out to be a simple, yet effective technique
for modeling curiosity across many popular RL benchmarks. This might suggest that many popular
RL video game test-beds are not as visually sophisticated as commonly thought. Interestingly, we
discover that although random features are sufficient for good performance at training, the learned
features appear to generalize better (e.g., to novel game levels in Super Mario Bros.).

In summary: (a) We perform a large-scale study of curiosity-driven exploration across a variety of
environments including: the set of Atari games [4], Super Mario Bros., virtual 3D navigation in
Unity [1], multi-player Pong, and Roboschool [39] environments. (b) We extensively investigate
different feature spaces for learning the dynamics-based curiosity: random features, pixels, inverse-
dynamics [27] and variational auto-encoders [15] and evaluate generalization to unseen environments.
(c) We conclude by discussing some limitations of a direct prediction-error based curiosity formulation.
We observe that if the agent itself is the source of stochasticity in the environment, it can reward itself
without making any actual progress. We empirically demonstrate this limitation in a 3D navigation
task where the agent controls different parts of the environment.
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2 Dynamics-based Curiosity-driven Learning

Consider an agent that sees an observation xt, takes an action at and transitions to the next state with
observation xt+1. We want to incentivize this agent with a reward rt relating to how informative the
transition was. To provide this reward, we use an exploration bonus involving the following elements:
(a) a network to embed observations into representations φ(x), (b) a forward dynamics network
to predict the representation of the next state conditioned on the previous observation and action
p(φ(xt+1)|xt, at). Given a transition tuple {xt, xt+1, at}, the exploration reward is then defined as
rt = − log p(φ(xt+1)|xt, at), also called the surprisal [2].

An agent trained to maximize this reward will favor transitions with high prediction error, which will
be higher in areas where the agent has spent less time, or in areas with complex dynamics. Such
a dynamics-based curiosity has been shown to perform quite well across scenarios [27] especially
when the dynamics are learned in an embedding space rather than raw observations. In this paper,
we explore dynamics-based curiosity and use mean-squared error corresponding to a fixed-variance
Gaussian density as surprisal, i.e., ‖f(xt, at)− φ(xt+1)‖22 where f is the learned dynamics model.
However, any other density model could be used.

2.1 Feature spaces for forward dynamics

Consider the representation φ in the curiosity formulation above. If φ(x) = x, the forward dynamics
model makes predictions in the observation space. A good choice of feature space can make the
prediction task more tractable and filter out irrelevant aspects of the observation space. But, what
makes a good feature space for dynamics driven curiosity? We narrow down a few qualities that a
good feature space should have:

• Compact: The features should be easy to model by being low(er)-dimensional and filtering
out irrelevant parts of the observation space.

• Sufficient: The features should contain all the important information. Otherwise, the agent
may fail to be rewarded for exploring some relevant aspect of the environment.

• Stable: Non-stationary rewards make it difficult for reinforcement agents to learn. Explo-
ration bonuses by necessity introduce non-stationarity since what is new and novel becomes
old and boring with time. In a dynamics-based curiosity formulation, there are two sources
of non-stationarity: the forward dynamics model is evolving over time as it is trained and
the features are changing as they learn. The former is intrinsic to the method, and the latter
should be minimized where possible

In this work, we systematically investigate the efficacy of a number of feature learning methods,
summarized briefly as follows:

Pixels The simplest case is where φ(x) = x and we fit our forward dynamics model in the
observation space. Pixels are sufficient, since no information has been thrown away, and stable
since there is no feature learning component. However, learning from pixels is tricky because the
observation space may be high-dimensional and complex.

Random Features (RF) The next simplest case is where we take our embedding network, a
convolutional network, and fix it after random initialization. Because the network is fixed, the features
are stable. The features can be made compact in dimensionality, but they are not constrained to be.
However, random features may fail to be sufficient.

VAE IDF RF Pixels

Stable No No Yes Yes
Compact Yes Yes Maybe No
Sufficient Yes Maybe Maybe Yes

Table 1: Table summarizing the categorization of
different kinds of feature spaces considered.

Variational Autoencoders (VAE) VAEs
were introduced in [15, 31] to fit latent variable
generative models p(x, z) for observed data
x and latent variable z with prior p(z) using
variational inference. The method calls for an
inference network q(z|x) that approximates the
posterior p(z|x). This is a feedforward network
that takes an observation as input and outputs a
mean and variance vector describing a Gaussian
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distribution with diagonal covariance. We can then use the mapping to the mean as our embedding
network φ. These features will be a low-dimensional approximately sufficient summary of the
observation, but they may still contain some irrelevant details such as noise, and the features will
change over time as the VAE trains.

Inverse Dynamics Features (IDF) Given a transition (st, st+1, at) the inverse dynamics task is
to predict the action at given the previous and next states st and st+1. Features are learned using
a common neural network φ to first embed st and st+1. The intuition is that the features learned
should correspond to aspects of the environment that are under the agent’s immediate control. This
feature learning method is easy to implement and in principle should be invariant to certain kinds of
noise (see [27] for a discussion). A potential downside could be that the features learned may not be
sufficient, that is they do not represent important aspects of the environment that the agent cannot
immediately affect.

A summary of these characteristics is provided in Table 1. Note that the learned features are not
stable because their distribution changes as learning progresses. One way to achieve stability could
be to pre-train VAE or IDF networks. However, unless one has access to the internal state of the
game, it is not possible to get a representative data of the game scenes to train the features. One way
is to act randomly to collect data, but then it will be biased to where the agent started, and won’t
generalize further. Since all the features involve some trade-off of desirable properties, it becomes an
empirical question as to how effective each of them is across environments.

2.2 Practical considerations in training an agent driven purely by curiosity

Deciding upon a feature space is only first part of the puzzle in implementing a practical system.
Here, we detail the critical choices we made in the learning algorithm. Our goal was to reduce
non-stationarity in order to make learning more stable and consistent across environments. Through
the following considerations outlined below, we are able to get exploration to work reliably for
different feature learning methods and environments with minimal changes to the hyper-parameters.

• PPO. In general, we have found PPO algorithm [38] to be a robust learning algorithm that
requires little hyper-parameter tuning, and hence, we stick to it for our experiments.

• Reward normalization. Since the reward function is non-stationary, it is useful to normalize
the scale of the rewards so that the value function can learn quickly. We did this by dividing
the rewards by a running estimate of the standard deviation of the sum of discounted rewards.

• Advantage normalization. While training with PPO, we normalize the advantages [46] in a
batch to have a mean of 0 and a standard deviation of 1.

• Observation normalization. We run a random agent on our target environment for 10000
steps, then calculate the mean and standard deviation of the observation and use these to
normalize the observations when training. This is useful to ensure that the features do
not have very small variance at initialization and to have less variation across different
environments.

• More actors. The stability of the method is greatly increased by increasing the number of
parallel actors (which affects the batch-size) used. We typically use 128 parallel runs of the
same environment for data collection while training an agent.

• Normalizing the features. In combining intrinsic and extrinsic rewards, we found it useful to
ensure that the scale of the intrinsic reward was consistent across state space. We achieved
this by using batch-normalization [13] in the feature embedding network.

2.3 ‘Death is not the end’: discounted curiosity with infinite horizon

One important point is that the use of an end of episode signal, sometimes called a ‘done’, can often
leak information about the true reward function. If we don’t remove the ‘done’ signal, many of the
Atari games become too simple. For example, a simple strategy of giving +1 artificial reward at every
time-step when the agent is alive and 0 on death is sufficient to obtain a high score in some games,
for instance, the Atari game ‘Breakout’ where it will seek to maximize the episode length and hence
its score. In the case of negative rewards, the agent will try to end the episode as quickly as possible.
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Figure 2: A comparison of feature learning methods on 8 selected Atari games and the Super Mario Bros. These
evaluation curves show the mean reward (with standard error) of agents trained purely by curiosity, without
reward or an end-of-episode signal. We see that our purely curiosity-driven agent is able to gather rewards in
these environments without using any extrinsic reward at training. Results on all of the Atari games are in the
appendix in Figure 8. We find curiosity model trained on pixels does not work well across any environment
and VAE features perform either same or worse than random and inverse dynamics features. Further, inverse
dynamics-trained features perform better than random features in 55% of the Atari games. An interesting
outcome of this analysis is that random features for modeling curiosity are a simple, yet surprisingly strong
baseline and likely to work well in half of the Atari games.

In light of this, if we want to study the behavior of pure exploration agents, we should not bias the
agent. In the infinite horizon setting (i.e., the discounted returns are not truncated at the end of the
episode and always bootstrapped using the value function), death is just another transition to the
agent, to be avoided only if it is boring. Therefore, we removed ‘done’ to separate the gains of an
agent’s exploration from merely that of the death signal. In practice, we do find that the agent avoids
dying in the games since that brings it back to the beginning of the game, an area it has already seen
many times and where it can predict the dynamics well. This subtlety has been neglected by previous
works showing experiments without extrinsic rewards.

3 Experiments

In all of our experiments, both the policy and the embedding network work directly from pixels.
For our implementation details including hyper-parameters and architectures, please refer to the
Appendix A. Unless stated otherwise, all curves are the average of three runs with different seeds,
and the shaded areas are standard errors of the mean. We have released the code and videos of a
purely curious agent playing across all environments on the website 2.

3.1 Curiosity-driven learning without extrinsic rewards

We begin by scaling up a pure curiosity-driven learning to a large number of environments without
using any extrinsic rewards. We pick a total of 54 diverse simulated environments, as shown in
Figure 1, including 48 Atari games, Super Mario Bros., 2 Roboschool scenarios (learning Ant
controller and Juggling), Two-player Pong, 2 Unity mazes (with and without a TV controlled by
the agent). The goal of this large-scale analysis is to investigate the following questions: (a) What
actually happens when you run a pure curiosity-driven agent on a variety of games without any
extrinsic rewards? (b) What kinds of behaviors can you expect from these agents? (c) What is the
effect of the different feature learning variants in dynamics-based curiosity on these behaviors?

2https://pathak22.github.io/large-scale-curiosity/
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A) Atari Games To answer these questions, we began with a collection of well-known Atari games
and ran a suite of experiments with different feature learning methods. One way to measure how well
a purely curious agent performs is to measure the extrinsic reward it is able to achieve, i.e. how good
is the agent at playing the game. We show the evaluation curves of mean extrinsic reward in on 8
common Atari games in Figure 2 and all 48 Atari suite in Figure 8 in the appendix. It is important
to note that the extrinsic reward is only used for evaluation, not for training. However, this is just a
proxy for pure exploration because the game rewards could be arbitrary and might not align at all
with how the agent explores out of curiosity.

The first thing to notice from the curves is: most of them are going up. This shows that a pure
curiosity-driven agent can learn to obtain external rewards even without using any extrinsic rewards
during training. It is remarkable that agents with no extrinsic reward and no end of episode signal can
learn to get scores comparable in some cases to learning with the extrinsic reward. For instance, in
Breakout, the game score increases on hitting the ball with the paddle into bricks which disappear
and give points when struck. The more times the bricks are struck in a row by the ball, the more
complicated the pattern of bricks remaining becomes, making the agent more curious to explore
further, hence, collecting points as a bi-product. Further, when the agent runs out of lives, the bricks
are reset to a uniform structure again that has been seen by the agent many times before and is hence
very predictable, so the agent tries to stay alive to be curious by avoiding reset by death.

This is an unexpected result and might suggest that many popular RL test-beds do not need an external
reward. This may be because game designers (similar to architects, urban planners, gardeners,
etc.) are very good at setting up curriculums to guide agents through the task explaining the
reason Curiosity-like objective decently aligns with the extrinsic reward in many human-designed
environments [6, 12, 16, 48]. However, this is not always the case, and sometimes a curious agent
can even do worse than random agent! This happens when the extrinsic reward has little correlation
with the agent’s exploration, or when the agent fails to explore efficiently (e.g. see games ‘Atlantis’,
‘IceHockey’ in Figure 8). We further encourage the reader to refer to the game-play videos of the
agent available on the website for a better understanding of the learned skills.

Comparison of feature learning methods: We compare four feature learning methods in Figure 2:
raw pixels, random features, inverse dynamics features and VAE features. Training dynamics on
raw-pixels performs bad across all the environments, while encoding pixels into features does better.
This is likely because it is hard to learn a good dynamics model in pixel space, and prediction errors
may be dominated by small irrelevant details.

Surprisingly, random features (RF) perform quite well across tasks and sometimes better than using
learned features. One reason for good performance is that the random features are kept frozen (stable),
the dynamics model learned on top of them has an easier time because of the stationarity of the target.
In general, random features should work well in the domains where visual observations are simple
enough, and random features can preserve enough information about the raw signal, for instance,
Atari games. Interestingly, we find that while random features work well at training, IDF learned
features appear to generalize better in Mario Bros. (see Section 3.2 for details).

The VAE method also performed well but was somewhat unstable, so we decided to use RF and IDF
for further experiments. The detailed result in appendix Figure 8 compares IDF vs. RF across the
full Atari suite. To quantify the learned behaviors, we compared our curious agents to a randomly
acting agent. We found that an IDF-curious agent collects more game reward than a random agent in
75% of the Atari games, an RF-curious agent does better in 70%. Further, IDF does better than RF in
55% of the games. Overall, random features and inverse dynamics features worked well in general.
Further details in the appendix.

B) Super Mario Bros. We compare different feature learning methods in Mario Bros. in Figure 2.
Super Mario Bros has already been studied in the context of extrinsic reward free learning [27] in
small-scale experiments, and so we were keen to see how far curiosity alone can push the agent. We
use an efficient version of Mario simulator faster to scale up for longer training keeping observation
space, actions, dynamics of the game intact. Due to 100x longer training and using PPO for
optimization, our agent is able to pass several levels of the game, significantly improving over prior
exploration results on Mario Bros.

Could we further push the performance of a purely curious agent by making the underlying opti-
mization more stable? One way is to scale up the batch-size. We do so by increasing the number
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(a) Mario w/ large batch (b) Juggling (Roboschool) (c) Two-player Pong

Figure 3: (a) Left: A comparison of the RF method on Mario with different batch sizes. Results are without
using extrinsic reward. (b) Center: Number of ball bounces in the Juggling (Roboschool) environment. (c) Right:
Mean episode length in the multiplayer Pong environment. The discontinuous jump on the graph corresponds to
the agent reaching a limit of the environment - after a certain number of steps in the environment the Atari Pong
emulator starts randomly cycling through background colors and becomes unresponsive to agent’s actions

of parallel threads for running environments from 128 to 2048. We show the comparison between
training using 128 and 2048 parallel environment threads in Figure 3(a). As apparent from the graph,
training with large batch-size using 2048 parallel environment threads performs much better. In fact,
the agent is able to explore much more of the game: discovering 11 different levels of the game,
finding secret rooms and defeating bosses. Note that the x-axis in the figure is the number of gradient
steps, not the number of frames, since the point of this large-scale experiment is not a claim about
sample-efficiency, but performance with respect to training the agent. This result suggests that the
performance of a purely curiosity-driven agent would improve as the training of base RL algorithm
(which is PPO in our case) gets better. The video is on the website.

C) Roboschool Juggling We modified the Pong environment from the Roboschool framework to
only have one paddle and to have two balls. The action space is continuous with two-dimensions,
and we discretized the action space into 5 bins per dimension giving a total of 25 actions. Both the
policy and embedding network are trained on pixel observation space (note: not state space). This
environment is more difficult to control than the toy physics used in games, but the agent learns to
intercept and strike the balls when it comes into its area. We monitored the number of bounces of the
balls as a proxy for interaction with the environment, as shown in Figure 3(b). See the video on the
project website.

D) Roboschool Ant Robot We also explored using the Ant environment which consists of an Ant
with 8 controllable joints on a track. We again discretized the action space and trained policy and
embedding network on raw pixels (not state space). However, in this case, it was less easy to measure
exploration because the extrinsic distance reward measures progress along the racetrack, but a purely
curious agent is free to move in any direction. We find that a walking like behavior emerges purely
out of a curiosity-driven training. We refer the reader to the result video showing that the agent is
meaningfully interacting with the environment.

E) Multi-agent curiosity in Two-player Pong We have already seen that a purely curiosity-driven
agent learns to play several Atari games without reward, but we wonder how much of that behavior is
caused by the fact that the opposing player is a computer-agent with hardcoded strategy. What would
happen if we were to make both the teams playing against each other to be curious? To find out, we
take Two-player Pong game where both the sides (paddles of pong) of the game are controlled by
curiosity-driven agents. We share the initial layers of both the agent and have different action heads,
i.e., total action space is now the cross product of the actions of player 1 by the actions of player 2.

Note that the extrinsic reward is meaningless in this context since the agent is playing both sides, so
instead, we show the length of the episode. The results are shown in Figure 3(c). We see from the
episode length that the agent learns to have more and longer rallies over time, learning to play pong
without any teacher – purely by curiosity on both sides. In fact, the game rallies eventually get so
long that they break our Atari emulator causing the colors to change radically, which crashes the
policy as shown in the plot.
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3.2 Generalization across novel levels in Super Mario Bros.

In the previous section, we showed that our purely curious agent can learn to explore efficiently and
learn useful skills, e.g., game playing behaviour in games, walking behaviour in Ant etc. So far,
these skills were shown in the environment where the agent was trained on. However, one advantage
of developing reward-free learning is that one should then be able to utilize abundant “unlabeled”
environments without reward functions by showing generalization to novel environments.

To test this, we first pre-train our agent using curiosity only in the Level 1-1 of Mario Bros. We
investigate how well RF and IDF-based curiosity agents generalize to novel levels of Mario. In
Figure 4, we show two examples of training on one level of Mario and finetuning on another testing
level, and compare to learning on the testing level from scratch. The training signal in all the cases
is only curiosity reward. In the first case, from Level 1-1 to Level 1-2, the global statistics of the
environments match (both are ‘day’ environment in games, i.e., blue background) but levels have
different enemies, geometry and difficulty level. We see that there is strong transfer from for both
methods in this scenario. However, the transfer performance is weaker in the second scenario from
Level 1-1 to Level 1-3. This is so because the problem is considerably harder for the latter level
pairing as there is a color scheme shift from day to night, as shown in Figure 4.

We further note that IDF-learned features transfer in both the cases and random features transfer
in the first case, but do not transfer in the second scenario from day to night. These results might
suggest that while random features perform well on training environments, learned features appear
to generalize better to novel levels. However, this needs more analysis in the future across a large
variety of environments. Overall, we find some promising evidence showing that skills learned by
curiosity help our agent explore efficiently in novel environments.
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Figure 4: Mario generalization experiments. On the left we
show transfer results from Level 1-1 to Level 1-2, and on
the right we show transfer results from Level 1-1 to Level
1-3. Underneath each plot is a map of the source and target
environments. All agents are trained without extrinsic reward.

Figure 5: Mean extrinsic reward in the
Unity environment while training with
terminal extrinsic + curiosity reward.
Note that the curve for extrinsic reward
only training is constantly zero.

3.3 Curiosity with Sparse External Reward

In all our experiments so far, we have shown that our agents can learn useful skills without any
extrinsic rewards driven purely by curiosity. However, in many scenarios, we might want the agent to
perform some particular task of interest. This is usually conveyed to the agent by defining extrinsic
rewards. When rewards are dense (e.g. game score at every frame), classic RL works well and
intrinsic rewards generally should not help performance. However, designing dense rewards is a
challenging engineering problem (see introduction for details). In this section, we evaluate how well
curiosity can help an agent perform a task in presence of sparse, or just terminal, rewards.

Terminal reward setting: For many real problems, e.g. navigation, the only terminal reward is
available, a setting where classic RL typically performs poorly. Hence, we consider the 3D navigation
in a maze designed in the Unity ML-agent framework with 9 rooms and a sparse terminal reward.
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There is a discrete action space consisting of: move forwards, look left 15 degrees, look right 15
degrees and no-op. The agent starts in the room-1, which is furthest away from room-9 which
contains the goal of the agent. We compare an agent trained with extrinsic reward (+1 when the goal
is reached, 0 otherwise) to an agent trained with extrinsic + intrinsic reward. Extrinsic only (classic
RL) never finds the goal in all our trials which means it is impossible to get any meaningful gradients.
Whereas extrinsic+intrinsic typically converges to getting the reward every time. Results in Figure 5
show results for vanilla PPO, PPO + IDF-curiosity and PPO + RF-curiosity.

Sparse reward setting: In preliminary experiments, we picked 5 Atari games which have sparse
rewards (as categorized by [3]), and compared extrinsic (classic RL) vs. extrinsic+intrinsic (ours)
reward performance. In 4 games out of 5, curiosity bonus improves performance (see Table 2 in
the appendix, the higher score is better). We would like to emphasize that this is not the focus of
the paper, and these experiments are provided just for completeness. We just combined extrinsic
(coefficient 1.0) and intrinsic reward (coefficient 0.01) directly without any tuning. We leave the
question on how to optimally combine extrinsic and intrinsic rewards as a future direction.

4 Related Work

Intrinsic Motivation: A family of approaches to intrinsic motivation reward an agent based on
prediction error [2, 27, 36, 42], prediction uncertainty [11, 44], or improvement [19, 34] of a forward
dynamics model of the environment that gets trained along with the agent’s policy. As a result
the agent is driven to reach regions of the environment that are difficult to predict for the forward
dynamics model, while the model improves its predictions in these regions. This adversarial and
non-stationary dynamics can give rise to complex behaviors. Relatively little work has been done in
this area on the pure exploration setting where there is no external reward. Of these mostly closely
related are those that use a forward dynamics model of a feature space such as Stadie et al. [42] where
they use autoencoder features, and Pathak et al. [27] where they use features trained with an inverse
dynamics task. These correspond roughly to the VAE and IDF methods detailed in Section 2.1.

Smoothed versions of state visitation counts can be used for intrinsic rewards [3, 9, 24, 47]. Count-
based methods have already shown very strong results when combining with extrinsic rewards such as
setting the state of the art in the Atari game Montezuma’s Revenge [3], and also showing significant
exploration of the game without using the extrinsic reward. It is not yet clear in which situations
count-based approaches should be preferred over dynamics-based approaches; we chose to focus on
dynamics-based bonuses in this paper since we found them straightforward to scale and parallelize.
In our preliminary experiments, we did not have sufficient success with already existing count-based
implementations in scaling up for a large-scale study.

Learning without extrinsic rewards or fitness functions has also been studied extensively in the
evolutionary computing where it is referred to as ‘novelty search’ [17, 18, 43]. There the novelty of
an event is often defined as the distance of the event to the nearest neighbor amongst previous events,
using some statistics of the event to compute distances. One interesting finding from this literature is
that often much more interesting solutions can be found by not solely optimizing for fitness.

Other methods of exploration are designed to work in combination with maximizing a reward function,
such as those utilizing uncertainty about value function estimates [5, 23], or those using perturbations
of the policy for exploration [8, 29]. Schmidhuber [37] and Oudeyer [25], Oudeyer and Kaplan [26]
provide a great review of some of the earlier work on approaches to intrinsic motivation. Alternative
methods of exploration include Sukhbaatar et al. [45] where they utilize an adversarial game between
two agents for exploration. In Gregor et al. [10], they optimize a quantity called empowerment which
is a measurement of the control an agent has over the state. In a concurrent work, diversity is used as
a measure to learn skills without reward functions Eysenbach et al. [7].

Random Features: One of the findings in this paper is the surprising effectiveness of random features,
and there is a substantial literature on random projections and more generally randomly initialized
neural networks. Much of the literature has focused on using random features for classification
[14, 33, 49] where the typical finding is that whilst random features can work well for simpler
problems, feature learning performs much better once the problem becomes sufficiently complex.
Whilst we expect this pattern to also hold true for dynamics-based exploration, we have some
preliminary evidence showing that learned features appear to generalize better to novel levels in
Mario Bros.
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5 Discussion
We have shown that our agents trained purely with a curiosity reward are able to learn useful
behaviours: (a) Agent being able to play many atari games without using any rewards. (b) Mario
being able to cross over over 11 levels without reward. (c) Walking like behavior emerged in the Ant
environment. (d) Juggling like behavior in Robo-school environment (e) Rally-making behavior in
Two-player Pong with curiosity-driven agent on both sides. But this is not always true as there are
some Atari games where exploring the environment does not correspond to extrinsic reward.

More generally, these results suggest that, in environments designed by humans, the extrinsic reward
is perhaps often aligned with the objective of seeking novelty. The game designers set up curriculums
to guide users while playing the game explaining the reason Curiosity-like objective decently aligns
with the extrinsic reward in many human-designed games [6, 12, 16, 48].

Limitation of prediction error based curiosity: A more serious potential limitation is the handling
of stochastic dynamics. If the transitions in the environment are random, then even with a perfect
dynamics model, the expected reward will be the entropy of the transition, and the agent will seek out
transitions with the highest entropy. Even if the environment is not truly random, unpredictability
caused by a poor learning algorithm, an impoverished model class or partial observability can lead
to exactly the same problem. We did not observe this effect in our experiments on games so we
designed an environment to illustrate the point.

Figure 6: We add a noisy TV to the unity environ-
ment in Section 3.3. We compare IDF and RF with
and without the TV.

We return to the maze of Section 3.3 to empir-
ically validate a common thought experiment
called the noisy-TV problem. The idea is that
local sources of entropy in an environment like
a TV that randomly changes channels when
an action is taken should prove to be an irre-
sistible attraction to our agent. We take this
thought experiment literally and add a TV to
the maze along with an action to change the
channel. In Figure 6 we show how adding the
noisy-TV affects the performance of IDF and
RF. As expected the presence of the TV dras-
tically slows down learning, but we note that
if you run the experiment for long enough the
agents do sometimes converge to getting the
extrinsic reward consistently. We have shown
empirically that stochasticity can be a prob-
lem, and so it is important for future work to
address this issue in an efficient manner.

Future Work: We have presented a simple and scalable approach that can learn nontrivial behaviors
across a diverse range of environments without any reward function or end-of-episode signal. One
surprising finding of this paper is that random features perform quite, but learned features appear to
generalize better. Whilst we believe that learning features will become important once the environment
is complex enough, we leave that up to future work to explore.

Our wider goal, however, is to show that we can take advantage of many unlabeled (i.e., not
having an engineered reward function) environments to improve performance on a task of
interest. Given this goal, showing performance in environments with a generic reward function
is just the first step, and future work could investigate transfer from unlabeled to labeled environments.
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A Implementation Details

We have released the training code and environments on our website 3. For full details, we refer the reader to our
code and video results in the website.

Pre-processing: All experiments were done with pixels. We converted all images to grayscale and resized to
size 84x84. We learn the agent’s policy and forward dynamics function both on a stack of historical observations
[xt−3, xt−2, xt−1, xt] instead of only using the current observation. This is to capture partial observability in
these games. In the case of Super Mario Bros and Atari experiments, we also used a standard frameskip wrapper
that repeats each action 4 times.

Architectures: Our embedding network and policy networks had identical architectures and were based on
the standard convolutional networks used in Atari experiments. The layer we take as features in the embedding
network had dimension 512 in all experiments and no nonlinearity. To keep the scale of the prediction error
consistent relative to extrinsic reward, in the Unity experiments we applied batchnorm to the embedding network.
We also did this for the Mario generalization experiments to reduce covariate shift from level to level. For
the VAE auxiliary task and pixel method, we used a similar deconvolutional architecture the exact details of
which can be found in our code submission. The IDF and forward dynamics networks were heads on top of the
embedding network with several extra fully-connected layers of dimensionality 512.

Hyper-parameters: We used a learning rate of 0.0001 for all networks. In most experiments, we used
128 parallel environments with the exceptions of the Unity and Roboschool experiments where we could only
run 32 parallel environments, and the large scale Mario experiment where we used 2048. We used rollouts of
length 128 in all experiments except for the Unity experiments where we used 512 length rollouts so that the
network could quickly latch onto the sparse reward. In the initial 9 experiments on Mario and Atari, we used 3
optimization epochs per rollout in the interest of speed. In the Mario scaling, generalization experiments, as well
as the Roboschool experiments, we used 6 epochs. In the Unity experiments, we used 8 epochs, again to more
quickly take advantage of sparse rewards.

B Additional Results

B.1 Atari

To better measure the amount of exploration, we provide the best return of curiosity-driven agents in figure 7(a)
and the episode lengths in figure 7(b). Notably on Pong the increasing episode length combined with a plateau
in returns shows that the agent maximizes the number of ball bounces, rather than the reward.

Figure 8 shows the performance of curiosity-driven agents based on Inverse Dynamics and Random features on
48 Atari games.

Although not the focus of this paper, for completeness we include some results on combining intrinsic and
extrinsic reward on several sparse reward Atari games. When combining with extrinsic rewards, we use the end
of the episode signal. The reward used is the extrinsic reward plus 0.01 times the intrinsic reward. The results
are shown in Table 2. We don’t observe a large difference between the settings, likely because the combination
of intrinsic and extrinsic reward needs to be tuned. We did observe that one of the intrinsic+extrinsic runs on
Montezuma’s Revenge explored 10 rooms.

(a) Best returns (b) Episode length

Figure 7: (a) Left: Best extrinsic returns on eight Atari games and Mario. (c) Right: Mean episode lengths on
eight Atari games and Mario.

3Website at https://pathak22.github.io/large-scale-curiosity/
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Figure 8: Pure curiosity-driven exploration (no extrinsic reward, or end-of-episode signal) on 48 Atari games.
We observe that the extrinsic returns of curiosity-driven agents often increases despite the agents having no access
to the extrinsic return or end of episode signal. In multiple environments, the performance of the curiosity-driven
agents is significantly better than that of a random agent, although there are environments where the behavior of
the agent is close to random, or in fact seems to minimize the return, rather than maximize it. For the majority
of the training process RF perform better than a random agent in about 67% of the environments, while IDF
perform better than a random agent in about 71% of the environments.

Reward Gravitar Freeway Venture PrivateEye MontezumaRevenge

Ext Only 999.3± 220.7 33.3± 0.6 0± 0 5020.3± 395 1783± 691.7
Ext + Int 1165.1± 53.6 32.8± 0.3 416± 416 3036.5± 952.1 2504.6± 4.6

Table 2: These results compare the mean reward (± std-error) after 100 million frames across 3
seeds for an agent trained with intrinsic plus extrinsic reward versus extrinsic reward only. The
extrinsic (coefficient 1.0) and intrinsic reward (coefficient 0.01) were directly combined without any
hyper-parameter tuning. We leave the question on how to optimally combine extrinsic and intrinsic
rewards up to future work. This is to emphasize that combining extrinsic with intrinsic rewards is not
the focus of the paper, and these experiments are provided just for completeness.

B.2 Mario

We show the analogue of the plot shown in Figure 3(a) showing max extrinsic returns. See Figure 9.
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Figure 9: Best extrinsic returns on the Mario scaling experiments. We observe that larger batches allow the
agent to explore more effectively, reaching the same performance in less parameter updates, and also achieving
better ultimate scores.
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