
§ Self-supervision
§ Curious	exploration
§ Learning	“common	sense”	

Learning	to	Control	Self-Assembling	Morphologies
A	Study	of	Generalization	via	Modularity

Deepak	Pathak*					Chris	Lu*					Trevor	Darrell				Phillip	Isola						Alexei	A.	Efros
How	to	train	a	robot	to	act? UC	Berkeley (*	equal	contribution)

Code	Released!
https://	pathak22.github.io/modular-assemblies/

Generalization	via	Modularity

Primitive	Agents:	“limbs”

How	to	adapt	when	hardware	changes?

Adapt	by	Finetuning?		

Too	slow	as	shape	changes	every	iteration!
shared
objective

§ Multiple	tasks
§ Expert	demos
§ Rewards,	labels

Modular	Co-evolution	of	Control	and	Morphology

Software	starts	simple,	but	hardware	remains	fixed	&	complex!

.

Cylinder

Configurable
Motor	Joint

Ø Input				= Local Sensory	State

ØOutput	= Torques,	Link,	Unlink

Acts	as	single	agent		upon	joining.

Rewards	are	shared!

Potential	
Magnetic	Joint

Node

Node

Node

Node
Node

Node
Node

Node

Node

Node
Node Node

Bottom-up
message out

Bottom-up
message in

Top-down
message in

Top-down
message out

Node
input

ActionBottom-up
function

Top-down
function

𝜋"

shared
policy

output

inputsingle	àmulticellular
(i.e.	competitionà collaboration)

Compositionality	is	useful	in	language	(Andreas	
et.al.	2016).	However,	parser	is	fixed	à tractable.	

How	to	implement	compositionality	in	hardware?

Dynamic	Graph	Networks	(DGN)

Idea	1:	Separate	policy	for	each	limb
with	shared params

Iteration	t																								Iteration	t+1	

Idea	2:	Neural	Networks	as	reusable	LEGO Blocks

Dynamic	+	Graph			è Dynamic	Graph	Nets

𝜋"

shared
policy

output

input

message
output

message
input

same	
dimension

Self-Assembling	Robots	
in	the	Real	World?

[Mark	Yim’s Lab	at	UPenn] [Daniela	Rus's	Lab	at	MIT]

[Modular	Snake	Robot	– Howie	Choset’s Lab	at	CMU]

Message	Passing:

Children	pass	messages	to	
parents	for	communication.

0 250 500 750 1000 1250 1500 1750

1uPber Rf trDining steSs

2000

4000

6000

8000

10000

12000

14000

16000

0
eD

n
5e

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(a) Standing Up

0 200 400 600 800 1000

1uPber Rf trDining steSs

2000

4000

6000

8000

10000

12000

14000

16000

0
eD

n
Re

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(b) Standing Up w/ Wind

0 500 1000 1500 2000 2500

1uPber Rf trDining steSs

−2

0

2

4

6

8

0
eD

n
5e

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(c) Locomotion

Figure 4: Training self-assembling agents: We show the performance of different methods for joint training of
control and morphology for three tasks: learning to stand up (left), standing up in the presence of wind (center)
and locomotion in bumpy terrain (right). These policies generalize to novel scenarios as shown in the tables.

network information about its children nodes. We redefine ⇡i
✓ as ⇡i

✓ : [sit,m
Ci
t] ! [ait,m

i
t] where

mi
t is the output message of policy that goes into the parent limb and mCi

t is the aggregated input
messages from all the children nodes, i.e, mCi

t =
P

c2Ci
mc

t . If i has no children (i.e, root), a vector
of zeros is passed in mCi

t . Messages are passed recursively until the root node. An alternative way is
to start from the root node and recursively pass until the messages reach the leaf nodes.

(b) No message passing: Note that for some environments or tasks, the context from the other nodes
might not be a necessary requirement for effective control. In such scenarios, message passing might
create extra overhead for training a DGN. Importantly, even with no messages, DGN still allows for
coordination between limbs. This is similar to a typical cooperative multi-agent setup [28], where
each limb makes its own decisions in response to the previous actions of the other agents. However,
our setup differs in that our agents may physically join up, rather than just coordinating behavior.

4 Experiments

We test the co-evolution of morphology and control across two primary tasks where self-assembling
agents learn to: (a) stand up, and (b) perform locomotion. Limbs start each episode disconnected
and located just above the ground plane at random locations, as shown in Figure 3. In the absence
of an edge, input messages are set to 0 and the output ones are ignored. Action space is continuous
raw torque values. Across all the tasks, the number of limbs at training is kept fixed to 6. We take
the model from each time step and evaluate it on 50 episode runs to plot mean and std-deviation
confidence interval in training curves. At test, we report the mean reward across 50 episodes of
1200 environment steps. The main focus of our investigation is to evaluate if the emerged modular
controller generalizes to novel morphologies and environments. Video is on the project website and
implementation details are in Section 1.1 of the supplementary.

Baselines We further compare how well these dynamic morphologies perform in comparison to a
learned monolithic policy for both dynamic and fixed morphologies. In particular, we compare to a (a)
Monolithic Policy, Dynamic Graph: Baseline where agents are still dynamic and can self-assemble,
but their controller is represented by a single monolithic policy that takes as input the combined state
of all agents and outputs actions for each of them. (b) Monolithic Policy, Fixed Graph: Similar single
monolithic policy as the previous baseline, but the morphology is hand-designed constructed from
the limbs and kept fixed and static during training and test. This is analogous to a standard robotics
“vanilla RL” setup in which morphology is predefined, and then a policy is learned to control it. We
chose the fixed morphology to be a straight chain of 6-limbs in all the experiments. This linear-chain
may be optimal for standing as tall as possible, but it is not necessarily optimal for learning to stand;
the same would hold for locomotion. However, we confirmed that both standing and locomotion tasks
are solvable with linear-chain morphology (shown in Figure 3 and video on the project website).

Although the monolithic policy is more expressive (complete state information of all limbs), it is
also harder to train as we increase the number of limbs, because the observation and action spaces
increase in dimensionality. Indeed, this is what we find in Figure 1 of supplementary: the monolithic
policy can perform well on up to three limbs but does not reach the optimum on four to six limbs.
In contrast, the DGN limb policy (shared between all limbs) has a fixed size observation and action
space, independent of the number of limbs under control.

6

Curriculum	learning	
but	in	hardware.	

Message-passing	
helps!

0 250 500 750 1000 1250 1500 1750

1uPber Rf trDining steSs

2000

4000

6000

8000

10000

12000

14000

16000

0
eD

n
5e

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(a) Standing Up

0 200 400 600 800 1000

1uPber Rf trDining steSs

2000

4000

6000

8000

10000

12000

14000

16000

0
eD

n
Re

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(b) Standing Up w/ Wind

0 500 1000 1500 2000 2500

1uPber Rf trDining steSs

−2

0

2

4

6

8

0
eD

n
5e

w
Dr

Gs

DG1 (w/ Psgs)
DG1 (nR Psgs)

0RnRlithic PRlicy, DynDPic GrDSh
0RnRlithic PRlicy, 6tDtic GrDSh

(c) Locomotion

Figure 4: Training self-assembling agents: We show the performance of different methods for joint training of
control and morphology for three tasks: learning to stand up (left), standing up in the presence of wind (center)
and locomotion in bumpy terrain (right). These policies generalize to novel scenarios as shown in the tables.

network information about its children nodes. We redefine ⇡i
✓ as ⇡i

✓ : [sit,m
Ci
t] ! [ait,m

i
t] where

mi
t is the output message of policy that goes into the parent limb and mCi

t is the aggregated input
messages from all the children nodes, i.e, mCi

t =
P

c2Ci
mc

t . If i has no children (i.e, root), a vector
of zeros is passed in mCi

t . Messages are passed recursively until the root node. An alternative way is
to start from the root node and recursively pass until the messages reach the leaf nodes.

(b) No message passing: Note that for some environments or tasks, the context from the other nodes
might not be a necessary requirement for effective control. In such scenarios, message passing might
create extra overhead for training a DGN. Importantly, even with no messages, DGN still allows for
coordination between limbs. This is similar to a typical cooperative multi-agent setup [28], where
each limb makes its own decisions in response to the previous actions of the other agents. However,
our setup differs in that our agents may physically join up, rather than just coordinating behavior.

4 Experiments

We test the co-evolution of morphology and control across two primary tasks where self-assembling
agents learn to: (a) stand up, and (b) perform locomotion. Limbs start each episode disconnected
and located just above the ground plane at random locations, as shown in Figure 3. In the absence
of an edge, input messages are set to 0 and the output ones are ignored. Action space is continuous
raw torque values. Across all the tasks, the number of limbs at training is kept fixed to 6. We take
the model from each time step and evaluate it on 50 episode runs to plot mean and std-deviation
confidence interval in training curves. At test, we report the mean reward across 50 episodes of
1200 environment steps. The main focus of our investigation is to evaluate if the emerged modular
controller generalizes to novel morphologies and environments. Video is on the project website and
implementation details are in Section 1.1 of the supplementary.

Baselines We further compare how well these dynamic morphologies perform in comparison to a
learned monolithic policy for both dynamic and fixed morphologies. In particular, we compare to a (a)
Monolithic Policy, Dynamic Graph: Baseline where agents are still dynamic and can self-assemble,
but their controller is represented by a single monolithic policy that takes as input the combined state
of all agents and outputs actions for each of them. (b) Monolithic Policy, Fixed Graph: Similar single
monolithic policy as the previous baseline, but the morphology is hand-designed constructed from
the limbs and kept fixed and static during training and test. This is analogous to a standard robotics
“vanilla RL” setup in which morphology is predefined, and then a policy is learned to control it. We
chose the fixed morphology to be a straight chain of 6-limbs in all the experiments. This linear-chain
may be optimal for standing as tall as possible, but it is not necessarily optimal for learning to stand;
the same would hold for locomotion. However, we confirmed that both standing and locomotion tasks
are solvable with linear-chain morphology (shown in Figure 3 and video on the project website).

Although the monolithic policy is more expressive (complete state information of all limbs), it is
also harder to train as we increase the number of limbs, because the observation and action spaces
increase in dimensionality. Indeed, this is what we find in Figure 1 of supplementary: the monolithic
policy can perform well on up to three limbs but does not reach the optimum on four to six limbs.
In contrast, the DGN limb policy (shared between all limbs) has a fixed size observation and action
space, independent of the number of limbs under control.

6

