Learning to Control Self-Assembling Morphologies
Generalization via Modularity

Deepak Pathak*
Chris Lu*
Trevor Darrell
Phillip Isola
Alyosha Efros

* equal contribution

NeurIPS 2019
How do we train a robot?
- Multiple tasks
- Expert demonstrations
- Rewards, labels
- ...

Image: A robot arm and a cartoon character with multiple arms, symbolizing multiple tasks.
Self-supervision
Curious exploration
Learning “common sense”

- Multiple tasks
- Expert demonstrations
- Rewards, labels
... even earlier?
Single to Multicellular
Single to Multicellular competition \rightarrow collaboration
Single to Multicellular

competition \rightarrow collaboration

shared objective
Compositionality has been useful in language ...
How to implement compositionality in hardware?
Modular Co-evolution of Control and Morphology
Modular Co-evolution of Control and Morphology
Modular Co-evolution of Control and Morphology

Cylindrical Limb

Configurable Motor Joint
Modular Co-evolution of Control and Morphology
Modular Co-evolution of Control and Morphology
Modular Co-evolution of Control and Morphology

Potential Magnetic Joint
Modular Co-evolution of Control and Morphology

Potential Magnetic Joint
Modular Co-evolution of Control and Morphology

Acts as single agent upon joining

Rewards are shared!

Potential
Magnetic Joint
Modular Co-evolution of Control and Morphology

Acts as single agent upon joining
Rewards are shared!

- **Input** = *Local* Sensory State
- **Output** = Torques, Link, Unlink
Modular Co-evolution of Control and Morphology

Acts as single agent upon joining
Rewards are shared!

- **Input** = *Local* Sensory State
- **Output** = Torques, Link, Unlink
Consider the task of “standing up” ...
Vanilla Reinforcement Learning

1 limb policy

Standing Task
maximize Y-axis
How to learn compositional controllers?
Idea: Shared policy network across limbs
Idea: Shared policy network across limbs
How to adapt when morphology changes?
How to adapt when morphology changes?
Network as reusable LEGO Blocks
Network as reusable LEGO Blocks

\[\pi \theta \]

shared policy

output

input
Network as reusable LEGO Blocks

Input

\[\pi_\theta \]

Message input

Message output

Output

Shared policy
Network as reusable LEGO Blocks

- Shared policy: π_θ
- Output
- Same dimension: message
- Input
- Message input
Network as reusable LEGO Blocks

\[\pi \theta \]
Network as reusable LEGO Blocks

\[\pi_\theta \]

shared policy

input

message input

output

message output
Network as reusable LEGO Blocks

shared policy π_θ

input

output

message

output

message

input
Network as reusable LEGO Blocks

shared policy π_θ

output

message output

input

message input
Network as reusable LEGO Blocks

shared policy π_θ

input

message output

output

message input
Network as reusable LEGO Blocks

shared policy \(\pi_\theta \)

input message input

output message output

cut
Network as reusable LEGO Blocks

- Shared policy: π_θ
- Input and output messages
- Cut and paste
Network as reusable LEGO Blocks

adaptation by conditioning

cut and paste
Dynamic Graph Networks

Network as reusable LEGO Blocks

output

message output

shared policy

π_θ

input

message input

conditioning

cut and paste
BTW, basically curriculum learning but in hardware
How well does it generalize?
Generalization w/o Fine-tuning

twice as many limbs

Standing Task
maximize Y-axis
a bit crazy... is it even possible in real world?
Self-Assembling Robots in the Real World

[Mark Yim’s Lab at UPenn]

[Daniela Rus's Lab at MIT]

Also: [Modular Snake Robot – Howie Choset’s Lab at CMU]
code & data at
https://people.eecs.berkeley.edu/~pathak/

Poster # 197
Today (Tues)!!

Thank You!